Algorithms and Complexity

Table of Contents

Chapter 1 – Introduction: Some Representative Problems ... 3

- Example problem: stable matching .. 3
- 5 representative problems .. 3

Chapter 2 – Basics of Algorithm Analysis ... 5

- Computational Tractability .. 5
- Asymptotic order of growth ... 5
- Survey of common running times ... 5

Chapter 3 – Graphs ... 6

- Basic definitions .. 6
- Graph representation ... 6
- Paths and connectivity ... 6
- Testing bipartiteness .. 7
- Connectivity in directed graphs .. 8
- Directed acyclic graphs ... 9

Chapter 4 – Greedy Algorithms ... 11

- Interval scheduling .. 11
- Interval partitioning ... 12
- Scheduling to minimise lateness ... 13
- Optimal caching ... 15
- Shortest paths in a graph ... 17

Chapter 5 – Divide and Conquer .. 23

- Mergesort .. 23
- Counting inversions ... 24
- Closest pair of points ... 25

Chapter 6 – Dynamic Programming ... 29

- Algorithmic Paradigms ... 29
- Weighted interval scheduling .. 29
- Knapsack Problem .. 31
- Sequence alignment ... 32
- Sequence alignment in linear space ... 33
- Shortest Paths ... 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance Vector Protocol</td>
<td>36</td>
</tr>
<tr>
<td>Negative Cycles in a Graph</td>
<td>37</td>
</tr>
<tr>
<td>Chapter 7 – Network Flow</td>
<td>38</td>
</tr>
<tr>
<td>Maximum flow and minimum cut</td>
<td>38</td>
</tr>
<tr>
<td>Choosing good augmenting paths</td>
<td>43</td>
</tr>
<tr>
<td>Bipartite matching</td>
<td>44</td>
</tr>
<tr>
<td>Perfect matching</td>
<td>46</td>
</tr>
<tr>
<td>Disjoint paths</td>
<td>46</td>
</tr>
<tr>
<td>Chapter 8 – NP and Computational Intractability</td>
<td>49</td>
</tr>
<tr>
<td>Polynomial-time reductions</td>
<td>49</td>
</tr>
<tr>
<td>Reduction by simple equivalence</td>
<td>49</td>
</tr>
<tr>
<td>Reduction from special case to general case</td>
<td>50</td>
</tr>
<tr>
<td>Reduction by encoding with gadgets</td>
<td>50</td>
</tr>
<tr>
<td>Definition of NP</td>
<td>51</td>
</tr>
<tr>
<td>NP-Completeness</td>
<td>53</td>
</tr>
<tr>
<td>Sequencing problems</td>
<td>56</td>
</tr>
<tr>
<td>Partitioning problems</td>
<td>58</td>
</tr>
<tr>
<td>Graph colouring</td>
<td>59</td>
</tr>
<tr>
<td>Numerical problems</td>
<td>61</td>
</tr>
<tr>
<td>Co-NP and the asymmetry of NP</td>
<td>61</td>
</tr>
<tr>
<td>A partial taxonomy of hard problems</td>
<td>63</td>
</tr>
<tr>
<td>Chapter 10 – Extending the Limits of Tractability</td>
<td>64</td>
</tr>
<tr>
<td>Coping with NP-completeness</td>
<td>64</td>
</tr>
<tr>
<td>Finding small vertex covers</td>
<td>64</td>
</tr>
<tr>
<td>Solving NP-hard problems on trees</td>
<td>65</td>
</tr>
<tr>
<td>Circular arc colouring</td>
<td>66</td>
</tr>
<tr>
<td>Chapter 11 – Approximation Algorithms</td>
<td>69</td>
</tr>
<tr>
<td>Load balancing</td>
<td>69</td>
</tr>
<tr>
<td>Centre selection</td>
<td>71</td>
</tr>
<tr>
<td>The pricing method: vertex cover</td>
<td>72</td>
</tr>
<tr>
<td>LP rounding: vertex cover</td>
<td>73</td>
</tr>
<tr>
<td>Knapsack problem</td>
<td>75</td>
</tr>
<tr>
<td>The Median Algorithm and Analysis of Quicksort</td>
<td>77</td>
</tr>
<tr>
<td>Randomised analysis of quicksort</td>
<td>79</td>
</tr>
</tbody>
</table>
General

- Lecturer
 - Taso Viglas
 - SIT 413
 - tasos@it.usyd.edu.au
- Assessment
 - 20% Assignments
 - 20% Midterm quiz
 - 60% Final exam
- Reference Book
 - Kleinberg and Tardos – Algorithm Design

Chapter 1 – Introduction: Some Representative Problems

Example problem: stable matching

- Goal: given a set of preferences among two groups, match pairs such that all pairs are stable.
- Unstable: if \(x \) prefers \(y \) to its assigned \(Y \), or if \(y \) prefers \(x \) to its assigned \(X \).
- Stable: naturally desirable conditions
- Proof of correctness
 - Termination – algorithm terminates after at most \(n^2 \) iteration of while loop
 - Perfection – Every entity is matched
 - Stability – no unstable pairs
- Gale & Shapley proved (1962) that it is always possible to solves the stable marriage problem.
- Gale-Shapley algorithm:
 - Initialise each person to be free
 - Each man has a list of preferences for women, and proposes to every woman in order
 - A woman becomes engaged to him if she is free or prefers this man over her current fiancé, otherwise rejects him
 - \(O(n^2) \) time, man-optimal

5 representative problems

- **Interval Scheduling** – find maximum cardinality subset of mutually compatible jobs with start and finish times

\[
\begin{align*}
\text{\begin{tabular}{|c|c|c|}\hline
\text{Job} & \text{Start} & \text{Finish} \\
\hline
a & 0 & 2 \\
b & 1 & 4 \\
c & 3 & 5 \\
d & 5 & 7 \\
e & 6 & 9 \\
f & 8 & 10 \\
g & 9 & 11 \\
h & 10 & 11 \\
\hline
\end{tabular}}
\end{align*}
\]

- \(n \log n \) greedy algorithm
• **Weighted interval scheduling** – find maximum weight subset of mutually compatible jobs with start and finish times, and weights

 ![Weighted Interval Scheduling Diagram]

 - \(n \log n \) dynamic programming algorithm

• **Bipartite matching** – find maximum cardinality matching in bipartite graph

 ![Bipartite Matching Diagram]

 - \(n^k \) max-flow based algorithm

• **Independent set** – find maximum cardinality independent (subset of nodes such that no two are joined by an edge) set in graph

 ![Independent Set Diagram]

 - NP-complete

• **Competitive facility location** – select a maximum weight subset of nodes in graph with weighted nodes

 ![Competitive Facility Location Diagram]

 - Game: two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbours have been selected.

 - PSPACE-complete
Chapter 2 – Basics of Algorithm Analysis

Computational Tractability

- **Polynomial time**
 - Natural brute-force search algorithm, checking every possible solution
 - Usually 2^N time or worse
 - Desirable scaling property for an algorithm to be polynomial time:
 - There exists constants $c > 0$ and $d > 0$ such that on every input of size N, its running time is bounded by cN^d steps.

- **Worst case analysis**
 - Obtain bound using largest possible running time given an input of size N
 - Captures general efficiency in practice

- **Average case running time**
 - Hard/Impossible to model real instances by random distribution
 - Algorithm tuned for a certain distribution may perform poorly on other inputs

- **Polynomial time = efficient**
 - In practice, the constant and exponents are usually low.
 - Some algorithms do have high constants/exponents, and are useless in practice
 - Some algorithms have rare worst-case instances

Asymptotic order of growth

- **Upper bounds** – $O(f(n))$
- **Lower bounds** – $\Omega(f(n))$
- **Tight bounds** – $\Theta(f(n))$ i.e. both O and Ω
- **Notation:** Use $T(n) \in O(f(n))$ rather than $'= '$

Survey of common running times

- **Linear**
 - visits each element exactly once
 - E.g. merging
- $O(n \log n)$
 - Arises in divide-and-conquer algorithms

- **Quadratic time**
 - Enumerate all pairs of elements

- **Cubic time**
 - Enumerate all triples of elements

- **Polynomial time $O(n^k)$**
 - Enumerate all subsets of k nodes

- **Exponential time**
 - Enumerate all subsets
Chapter 3 – Graphs

Basic definitions

- Undirected graph $G = (V, E)$
- Captures pairwise relationship between objects
- Graph size: $n = |V|$, $m = |E|$

Graph representation

- Adjacency matrix
 - n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge
 - 2 representations of each edge
 - Space proportional to n^2
 - Checking for edge takes $O(1)$ time
 - Identifying all edges takes $\Theta(n^2)$ time

- Adjacency list
 - 2 representations of each edge
 - Space proportional to $m + n$
 - Checking for edge takes $O(\deg(u))$ time
 - Identifying edges takes $\Theta(m + n)$ time

Paths and connectivity

- A path in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E
- A path is simple if all nodes are distinct
- An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.
- A cycle is a path $v_1, v_2, \ldots, v_{k-1}, v_k$ in which $v_1 = v_k$, $k > 2$, and the first $k-1$ nodes are all distinct
- An undirected graph is a tree if it is connected and does not contain a cycle
Any two of the following statements imply the third:

- G is connected
- G does not contain a cycle
- G has $n - 1$ edges

Testing bipartiteness

- An undirected graph $G = (V, E)$ is **bipartite** if the nodes can be coloured red or blue such that every edge has one red and one blue end.

- If the graph is bipartite, many problems become easier (matching), or tractable (independent set)

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle

[Diagram showing bipartite graphs]

[Diagram showing non-bipartite graphs]

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds:

- No edge of G joins two nodes of the same layer, and G is bipartite
- An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (thus not bipartite)

[Diagram showing cases (i) and (ii)]

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds:

- No edge of G joins two nodes of the same layer, and G is bipartite.

 Pf. Suppose no edge joins two nodes in the layer.

 By previous lemma, this implies all edges join nodes on the same level.

 Bipartition: red nodes on odd levels, and blue on even levels.

[Diagram showing layers and bipartition]

- An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (thus not bipartite)
• **Pf.** Suppose \((x, y)\) is an edge with \(x, y\) in the same level \(L_j\). Let \(z = \text{lowest common ancestor lca}(x, y)\). Let \(L_i\) be the level containing \(z\). Consider the cycle that takes edge from \(x\) to \(y\), and then from \(y\) to \(z\), and \(z\) to \(x\). Its length is \(1 + (j - 1) + (j - i)\), which is odd.

- **Corollary.** A graph \(G\) is bipartite iff it does not contain odd length cycles.

Connectivity in directed graphs

- Directed graphs
 - Graph \(G = (V, E)\) where Edge \((u, v)\) goes from node \(u\) to node \(v\)

- Graph search
 - Directed reachability: Given a node \(s\), find all nodes reachable from \(s\)
 - Directed s-t shortest path: What is the length of the shortest path between two nodes \(s\) and \(t\)?
 - Graph search: BFS extends naturally to directed graphs

- Strong connectivity
 - Nodes \(u\) and \(v\) are mutually reachable is there is a path from \(u\) to \(v\) and also from \(v\) to \(u\)
 - A graph is strongly connected if every pair of nodes is mutually reachable
 - **Lemma.** Let \(s\) be any node. \(G\) is strongly connected \(\iff\) every node is reachable from \(s\), and \(s\) is reachable from any node.
 - **Pf.** \(\Rightarrow\) Follows from definition
 - **Pf.** \(\Leftarrow\) Path from \(u\) to \(v\): concatenate \(u\)-s path with \(s\)-v path
 Path from \(v\) to \(u\): concatenate \(v\)-s path with \(s\)-u path
 - **Theorem.** Can determine if \(G\) is strongly connected in \(O(m + n)\) time.
 - **Pf.** Pick any node \(s\).
 Run BFS from \(s\) in \(G\), then run BFS from \(s\) in \(G_{rev}\).
 Return true if and only if all nodes reached in both BFS executions.
Correctness follows immediately from previous lemma.

Directed acyclic graphs

- **Def.** A DAG is a directed graph that contains no directed cycles
- **Ex.** Precedence constraints: edge \((v_i, v_j)\) means node \(v_i\) must occur before \(v_j\)
- **Def.** A topological order of a directed graph \(G = (V, E)\) is an ordering of its nodes as \(v_1, v_2, \ldots, v_n\) so that for every edge \((v_i, v_j)\), we have \(i < j\).

- **Lemma.** If \(G\) is a DAG, then \(G\) has a node with no incoming edges.
 - **Pf.** (by contradiction)
 - Suppose the \(G\) is a DAG and every node has at least one incoming edge.
 - Pick any node \(v\), and begin following the edges backward from \(v\).
 - Since \(v\) has at least one incoming edge \((u, v)\), we can walk backward to \(u\).
 - Then, since \(u\) has at least one incoming edge \((x, u)\), we can walk backward to \(x\).
 - Repeat until we visit a node, say \(w\), twice.
 - Let \(C\) denote the sequence of nodes encountered between successive visits to \(w\).
 - \(C\) is a cycle.

- **Lemma.** If \(G\) is a DAG, then \(G\) has a topological ordering.
 - **Pf.** (by induction on \(n\))
 - Base case: true for \(n = 1\)
 - Give \(n > 1\) nodes, find a node \(v\) with no incoming edges.
 - \(G - \{v\}\) is a DAG, since deleting \(v\) cannot create cycles.
 - Inductive hypothesis: \(G - \{v\}\) has a topological ordering.
 - Place \(v\) first in topological ordering; then append nodes of \(G - \{v\}\) in topological order.
 - This is valid since \(v\) has no incoming edges.

To compute a topological ordering of \(G\):
Find a node \(v\) with no incoming edges and order it first
Delete \(v\) from \(G\)
Recursively compute a topological ordering of \(G - \{v\}\)
and append this order after \(v\)

- **Theorem.** Algorithm finds a topological order in \(O(m + n)\) time.
Pf.

- Maintain:
 - count[w], remaining number of incoming edges; and
 - S, set of remaining nodes with no incoming edges
- Initialise: O(m + n) via single scan through nodes
- Update: to delete v
 - Remove v from S
 - Decrement count[w] for all edges from v to w, and add w to S if count[w] hits 0
 - This is O(1) per edge
Chapter 4 – Greedy Algorithms

Interval scheduling

- Interval scheduling
 - Job starts at \(s_j \) and finishes at \(f_j \).
 - Two jobs are compatible if they don’t overlap.
 - Goal: find the maximum subset of mutually compatible jobs

- Greedy template. Consider jobs in some order. Take each job if it’s compatible with the ones already taken.
 - Earliest start time – consider jobs in ascending order of start time \(s_j \)
 - Earliest finishing time – consider jobs in ascending order of finish time \(f_j \)
 - Shortest interval – consider jobs in ascending order of interval length \(f_j - s_j \)
 - Fewest conflicts – count number of conflicting jobs \(c_j \) for each job. Schedule in ascending order

- Greedy algorithm
 - Consider jobs in increasing order of finishing time.
 - Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).
 - Jobs selected
      ```
      A ← ∅
      For \( j = 1 \) to \( n \):
        if job \( j \) compatible with \( A \)
          \( A ← A \cup \{j\} \)
      return A
      ```
 - Implementation: \(O(n \log n) \)
 - Remember job \(j^* \) that was last added to \(A \)
 - Job \(j \) is compatible with \(A \) if \(s_j \geq s_{j^*} \)

- Analysis of greedy algorithm
 - Pf. (by contradiction)
 - Assume greedy is not optimal
 - Let \(i_1, i_2, \ldots, i_k \) denote jobs selected by greedy
 - Let \(j_1, j_2, \ldots, j_m \) denote jobs selected by optimal solution, with \(i = j \) up to \(i_r = j_r \) for the largest possible value of \(r \).
Interval partitioning

- Interval partitioning
 - Lecture \(j \) starts at \(s_j \) and finishes at \(f_j \)
 - Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room
 - E.g. this schedule uses 4 classrooms to schedule 10 lectures:

```
<table>
<thead>
<tr>
<th>Time</th>
<th>9:00</th>
<th>9:30</th>
<th>10:00</th>
<th>10:30</th>
<th>11:00</th>
<th>11:30</th>
<th>12:00</th>
<th>12:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- E.g. this schedule uses only 3:

```
<table>
<thead>
<tr>
<th>Time</th>
<th>9:00</th>
<th>9:30</th>
<th>10:00</th>
<th>10:30</th>
<th>11:00</th>
<th>11:30</th>
<th>12:00</th>
<th>12:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- Lower bound on optimal solution
 - **Def.** The **depth** of a set of open intervals is the maximum number that contains any given time.
 - **Key observation.** Number of classrooms needed \(\geq \) depth.
 - **Ex.** Depth of schedule above = 3 \(\Rightarrow \) schedule below is optimal.
 - **Q.** Does there always exist a schedule equal to depth of intervals?

- Greedy algorithm
Consider lectures in increasing order of start time, assigning lecture to any compatible classroom

```
Sort intervals by starting time so that \( s_1 \leq s_2 \leq \ldots \leq s_n \).
\( d \leftarrow 0 \) \quad \text{number of allocated classrooms}

for \( j = 1 \) to \( n \) {
    if (lecture \( j \) is compatible with some classroom \( k \))
        schedule lecture \( j \) in classroom \( k \)
    else
        allocate a new classroom \( d + 1 \)
        schedule lecture \( j \) in classroom \( d + 1 \)
        \( d \leftarrow d + 1 \)
}
```

Implementation. \(O(n \log n) \)
- For each classroom \(k \), maintain the finish time of the last job added.
- Keep the classrooms in a priority queue

Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal.

Pf.
- Let \(d \) = number of classrooms that the greedy algorithm allocates.
- Classroom \(d \) is opened because we needed to schedule a job, say \(j \), that is incompatible with all \(d - 1 \) other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than \(s_j \).
- Thus, we have \(d \) lectures overlapping at time \(s_j + \varepsilon \).
- Key observation. All schedules use \(\geq d \) classrooms.

Scheduling to minimise lateness

- **Minimising lateness problem**
 - Single resource processes one job at a time
 - Job \(j \) required \(t_j \) units of processing time and is due at time \(d_j \)
 - If \(j \) starts at time \(s_j \), it finishes at time \(f_j = s_j + t_j \)
 - Lateness \(\ell_j = \max\{0, f_j - d_j\} \)
 - Goal: schedule all jobs to minimise maximum lateness \(L = \max \ell_j \)

Ex:

<table>
<thead>
<tr>
<th>(j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_j)</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(d_j)</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

- **Greedy template. Consider jobs in some order**
 - Shortest processing time first – Consider jobs in ascending order of processing time \(t_j \)
 - **Counterexample:**
 - Earliest deadline first – Consider jobs in ascending order of deadline \(d_j \)
- Smallest slack – Consider jobs in ascending order of slack $d_j - t_j$

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>10</td>
</tr>
<tr>
<td>d_j</td>
<td>10</td>
</tr>
</tbody>
</table>

Counterexample:

- Greedy algorithm.
 - Earliest deadline first

```
Sort n jobs by deadline so that $d_1 \leq d_2 \leq \ldots \leq d_n$

l = 0
for j from 1 to n
  Assign job j to interval $[t, t + t_j]$
  $d_j < t$, $f_j < t + t_j$
  $t \leftarrow t + t_j$

output intervals $[s_j, f_j]$
```

- Observation. There exists an optimal schedule with no idle time

<table>
<thead>
<tr>
<th>$d_j = 6$</th>
<th>$d_j = 9$</th>
<th>$d_j = 14$</th>
<th>$d_j = 15$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10 11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Inversions
 - Def. an inversion in schedule S is a pair of jobs i and j such that $i < j$ but j scheduled before i

- Observation. Greedy schedule has no inversions
 - If a schedule has an inversion, it has one with pair of inverted jobs scheduled consecutively
 - Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.
 - Pf. Let ℓ be the lateness before the swap, and let ℓ' be it afterwards.
 - $\ell'_k = \ell_k$ for all $k \neq i, j$
 - $\ell'_{i} \leq \ell_{i}$
 - If job j is late:
 - Theorem. Greedy schedule S is optimal
 - Pf. Define S^* to be an optimal schedule that has the fewest number of inversions
 - Can assume S^* has no idle time
 - If S^* has no inversions, then $S = S^*$
 - If S^* has an inversion, let $i - j$ be an adjacent inversion
Swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions
This contradicts the definition of S^*

Greedy algorithm strategies
- Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm’s.
- Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- Structural. Discover a simple “structural” bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Optimal caching
- Caching
 - Cache with capacity to store k items.
 - Sequence of m item requests d_1, d_2, \ldots, d_m
 - Cache hit: item already in cache when requested
 - Cache miss: item not already in cache when requested; must bring into cache and evict an existing if full
 - Goal: eviction schedule that minimises number of cache misses.
 - Ex. $K = 2$, initial cache = ab. Requests: a, b, c, b, c, a, a, b. Optimal eviction schedule: 2 cache misses

Optimal offline caching: farthest-in-future
- Farthest-in-future. Evict item in the cache that is not requested until farthest in the future.
 - Current cache: a b c d e f
 - Future queries: g a b c e d a b b c a d f e a f d e f g h ...
 - Theorem. [Bellady, 1960s] FF is optimal eviction schedule.
 - Pf. Algorithm and theorem are intuitive, proof is subtle

Reduced eviction schedules
- Def. A reduced eviction schedule is a schedule that only inserts an item into the cache in a step in which that item is requested.
- Intuition. Can transform an unreduced schedule into a reduced one with no more cache misses
Claim. Can transform any unreduced schedule S into a reduced schedule S' with no more cache misses

Pf. (by induction on number of unreduced items)
- Suppose S brings d into the cache at time t, without a request.
- Let c be the item S evicts when it brings d into the cache.
- Case 1: d evicted at time t', before the next request for d.
- Case 2: d requested at time t' before d is evicted.

Theorem. FF is optimal eviction algorithm

Invariant: There exists an optimal reduced schedule S that makes the same eviction schedule S_{FF} through the first $j + 1$ requests.

Pf. (by induction on number of requests j)
- Let S be reduced schedule that satisfies invariant through j requests. We produce S' that satisfies invariant after $j + 1$ requests.
- Consider $(j + 1)^{th}$ request $d = d_{j+1}$
- Since S and S_{FF} have agreed up until now, their cache contents are the same before request $j + 1$
- Case 1: (d is already in the cache) $S' = S$ satisfies invariant
- Case 2: (d is not in the cache; S and S_{FF} evict the same element) $S' = S$ satisfies invariant
- Case 3: (d is not in the cache; S_{FF} evicts e; S evicts $f \neq e$)
 - Begin construction of S' from S by evicting e instead of f

j	same	e	f
S			
$j+1$	same	e	d
S'			

 Now S' agrees with SFF on first $j + 1$ requests
- We show that having element f in cache is no worse than having element e
- Let j' be the first time after $j + 1$ that S and S' take a different action (involving e/f), and let g be item requested at time j'

<table>
<thead>
<tr>
<th>j'</th>
<th>same</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Case 3a: $g = e$. Can’t happen with FF since there must be a request for f before e.

 Case 3b: $g = f$. Element f can’t be in cache of S, so let e' be the element that S evicts.
 - If $e' = e$, S' accesses f from cache. Now S and S' have same cache
 - If $e' \neq e$, S' evicts e' and brings f into the cache. Now S and S' have same cache (Note S' is no longer reduced, but can be transformed into a reduced schedule that agrees with S_{FF} through step $j + 1$)

 Case 3c: $g \neq e$, f. S must evict e, other S' would take the same action.
• Online vs offline algorithms
 o Offline – full sequence of requests known a priori
 o Online (reality) – requests are not known in advance
 o LIFO – evict page brought in most recently
 o LRU – evict page least recently used

• Theorem. FF is optimal offline eviction algorithm.
 o Provides basis for understanding and analysing online algorithms
 o LRU is k-competitive
 o LIFO is arbitrarily bad.

Shortest paths in a graph
• Shortest path network.
 o Directed graph \(G = (V, E) \)
 o Source \(s \), destination \(t \)
 o Length \(\ell_e \) = length of edge \(e \)

• Shortest path problem: find the shortest (in terms of cost) directed path from \(s \) to \(t \)

• Dijkstra’s algorithm
 o Maintain a set of explored nodes \(S \) and the shortest path distance \(d(u) \) so far from \(s \) to \(u \)
 o Initialise \(S = \{s\} \), \(d(s) = 0 \)
 o Repeatedly choose unexplored node \(v \) which minimises \(\pi(v) = \min_{e=(u,v) \in S} d(u) + \ell_e \)
 o Add \(v \) to \(S \), and set \(d(v) = \pi(v) \) \(\ell \) is the shortest path to \(u \) in explored part, followed by an edge \((u, v)\)

• Dijkstra: Proof of correctness
 o Invariant. For each node \(u \in S \), \(d(u) \) is the length of the shortest \(s-u \) path.
 o Pf. (by induction on \(|S| \))
 ▪ Base case: \(|S| = 1 \) is trivial
 ▪ Inductive hypothesis: Assume true for \(|S| = k \geq 1 \)
 ▪ Let \(v \) be next node added to \(S \), and let \(u-v \) be the chosen edge.
 ▪ The shortest \(s-u \) path plus \((u, v)\) is an \(s-v \) path of length \(\pi(v) \).
 ▪ Consider any \(s-v \) path \(P \). We’ll see that it’s no shorter than \(\pi(v) \).
 ▪ Let \(x-y \) be the first edge in \(P \) that leaves \(S \), and \(P' \) be the subpath to \(x \).
• P is already too long as soon as it leaves S.

- Dijkstra: Implementation
 - For each unexplored node, explicitly maintain $\pi(v) = \min_{e=(u,v) \in S} d(u) + \ell_e$
 - Next node to explore = node with minimum $\pi(v)$
 - When exploring v, for each incident edge $e = (v, w)$, update $\pi(w) = \min\{\pi(w), \pi(v) + \ell_e\}$
 - Efficient implementation. Maintain a priority queue of unexplored nodes, prioritised by $\pi(v)$

<table>
<thead>
<tr>
<th>PQ Operation</th>
<th>Dijkstra</th>
<th>Array</th>
<th>Binary heap</th>
<th>d-way Heap</th>
<th>Fib heap \dagger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>1</td>
</tr>
<tr>
<td>Extract Min</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>Change Key</td>
<td>m</td>
<td>1</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>1</td>
</tr>
<tr>
<td>IsEmpty</td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\dagger Individual ops are amortized bounds

- Minimum Spanning Tree
 - Given a connected graph $G = (V, E)$ with real-valued edge weights c_e, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimised.

 $G = (V, E)$

 T, $\Sigma_{e \in T} c_e = 50$

 - Cayley’s Theorem. There are n^{n-2} spanning trees of K_n. (So can’t solve by brute force)

- MST: Greedy algorithms
 - Kruskal’s algorithm. Start with $T = \emptyset$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.
 - Reverse-delete algorithm. Start with $T = E$. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.
 - Prim’s algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.
 - Simplifying assumption: All edge costs c_e are distinct

- Cycles and Cuts
 - Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains $e.$
- **Cycle property.** Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.

- **Cycle.** Set of edges that form a-b, b-c, c-d, ..., y-z, z-a

- **Cutset.** A cut is a subset of nodes S. The corresponding cutest D is the subset of edges with exactly one endpoint in S.

- **Claim.** A cycle and a cutest interest in an even number of edges. (Cycle-cut intersection)

 - **Pf.** (by picture)

- **Greedy algorithms**
 - **Simplifying assumption:** All edge costs c_e are distinct
 - **Cut property.** Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.
 - **Pf.** (exchange argument)
 - Suppose e does not belong to T^*
 - Adding e to T^* creates a cycle C in T^*
 - Edge e is both in the cycle C and in the cutest D corresponding to S, which means there exists another edge, say f, that is in both C and D.
 - $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
 - Since $c_e < c_f$, $\text{cost}(T') < \text{cost}(T^*)$
 - This is a contradiction.
o **Cycle property.** Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T* does not contain f.

 - Pf. (exchange argument)
 - Suppose f belongs to T*
 - Deleting f from T* creates a cut S in T*
 - Edge f is both in the cycle C and in the cutset D corresponding to S, which means there exists another edge, say e, that is in both C and D.
 - T' = T* ∪ {e} – {f} is also a spanning tree.
 - Since c_e < c_f, cost(T') < cost(T*)
 - This is a contradiction.

o **Prim’s algorithm:** proof of correctness

 - [Jarník 1930, Dijkstra 1957, Prim 1959]
 - Initialise S = any node
 - Apply cut property to S
 - Add min cost edge in cutset corresponding to S to T, and add one new explored node u to S

 ![Prim's Algorithm](image)

 - **Implementation.** Use a priority queue ala Dijkstra
 - Maintain set of explored nodes S
 - For each unexplored node v, maintain attachment cost a[v] = cost of cheapest edge v to a node in S
 - O(n^2) with an array; O(m log n) with a binary heap.

    ```java
    Prim(G, c) {
        foreach (v ∈ V) a[v] ← ∞
        Initialize an empty priority queue Q
        foreach (v ∈ V) insert v onto Q
        Initialize set of explored nodes S ← Ø

        while (Q is not empty) {
            u ← delete min element from Q
            S ← S ∪ {u}
            foreach (edge e = (u, v) incident to u)
                if ((v ∉ S) and (c_e < a[v]))
                    decrease priority a[v] to c_e
        }
    }
    ```

o **Kruskal’s algorithm:** proof of correctness

 - [Kruskal 1956]
 - Consider edges in ascending order of weight.
 - Case 1: if adding e to T creates a cycle, discard e according to cycle property
Case 2: otherwise, insert $e = (u, v)$ into T according to cut property where $S =$ set of nodes in u’s connected component.

- **Implementation.** Use the union-find data structure.
 - Build set T of edges in the MST
 - Maintain set for each connected component.
 - $O(m \log n)$ for sorting and $O(m \alpha(m, n))$ for union-find

```java
Kruskal(G, c) {
    Sort edges weights so that $c_1 < c_2 < \ldots < c_m$.
    $T \leftarrow \emptyset$
    foreach ($u \in V$) make a set containing singleton $u$
    for $i = 1$ to $m$ are $u$ and $v$ in different connected components?
      $(u, v) = e_i$
      if ($u$ and $v$ are in different sets) {
        $T \leftarrow T \cup \{e_i\}$
        merge the sets containing $u$ and $v$
      }
    return $T$
}
```

- **Lexicographic tiebreaking**
 - To remove the assumption that all edge costs are distinct, perturb all edge costs by tiny amounts to break any ties.
 - **Impact.** Kruskal and Prim only interact with costs via pairwise comparisons. If perturbations are sufficiently small, MST with perturbed costs is MST with original costs.
 - **Implementation.** Can handle arbitrarily small perturbations implicitly by breaking ties lexicographically, according to index.

```java
boolean less(i, j) {
    if (cost(e_i) < cost(e_j)) return true
    else if (cost(e_i) > cost(e_j)) return false
    else if (i < j) return true
    else return false
}
```

- **Clustering**
 - Given a set U of n objects labelled p_1, p_2, \ldots, p_n classify into coherent groups
 - Distance function. Numeric value specifying “closeness” of two objects
 - Fundamental problem. Divide into clusters so that points in different clusters are far apart
 - **K-clustering.** Divide objects into k non-empty groups
 - **Distance function.** Assume it satisfies several natural properties
 - Identity of indiscernibles $d(p_i, p_j) = 0$ iff $p_i = p_j$
 - Nonnegativity $d(p_i, p_j) \geq 0$
 - Symmetry $d(p_i, p_j) = d(p_j, p_i)$
 - **Spacing.** Minimum distance between any pair of points in different clusters
Clustering of maximum spacing. Given an integer k, find a k-clustering of maximum spacing.

Single link k-clustering algorithm.
- Form a graph on the vertex set U, corresponding to n clusters
- Find the closest pair of objects from different clusters, and add an edge between them.
- Repeat $n - k$ times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal’s algorithm, stopping early.

Remark. Equivalent to finding an MST and deleting the $k - 1$ most expensive edges.

Theorem. Let C^* denote the clustering $C^*_1, ..., C^*_k$ formed by deleting the $k - 1$ most expensive edges of a MST. C^* is a k-clustering of max spacing.

Pf. Let C denote some other clustering $C_1, ..., C_k$
- The spacing of C^* is the length d^* of the $(k - 1)^{st}$ most expensive edge.
- Let p_i, p_j be in the same cluster in C^*, say C^*_r, but different clusters in C, say C_s and C_t
- Some edge (p, q) on p_i-p_j path in C^*_r spans two different clusters in C
- All edges on p_i-p_j path have length $\leq d^*$ since Kruskal chose them
- Spacing of C is $\leq d^*$ since p and q are in different clusters
Chapter 5 – Divide and Conquer

- **Divide and conquer**
 - Break up problem into several parts
 - Solve each part recursively
 - Combine solutions to sub-problems into overall solution

- **Most common usage**
 - Break up problem of size \(n \) into two equal parts of size \(\frac{n}{2} \)
 - Solve two parts recursively
 - Combine two solutions into overall solution in **linear time**

- **Consequence**
 - Brute force: \(n^2 \)
 - Divide and conquer: \(n \log n \)

Mergesort

- **Mergesort**
 - Divide array into two halves
 - Recursively sort each half
 - Merge two halves to make sorted whole

```
ALGORITHM TERMS
ALGORITHM TERMS
AGLOR
HIMST
AGHILMORST
```

- **Merging.** Combine two pre-sorted lists into a sorted whole.
 - Merge efficiently using a linear number of comparisons and a temporary array.

```
AGE1
```

- **A useful recurrence relation**
 - **Def.** \(T(n) \) = number of comparisons to mergesort an input of size \(n \).
 - **Mergesort recurrence.**
 \[
 T(n) \leq \begin{cases}
 0 & \text{if } n = 1 \\
 2T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n & \text{otherwise}
 \end{cases}
 \]
 - **Solution.** \(T(n) = O(n \log_2 n) \)
 - In the proofs, initially assume \(n \) is a power of 2, and replace \(\leq \) with =

- **Proof by recursion tree**
• Proof by telescoping
 o Claim. If T(n) satisfies this recurrence, then T(n) = O(n log₂ n)
 o Pf. for n > 1:

\[
\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1
\]

\[
- \frac{T(n/2)}{n/2} + 1
\]

\[
= \frac{T(n/4)}{n/4} + 1 + 1
\]

\[
\ldots
\]

\[
= \frac{T(n/n)}{n/n} + 1 + \ldots + 1 \frac{1}{log_2 n}
\]

= \log_2 n

• Proof by induction
 o Claim. If T(n) satisfies this recurrence, then T(n) = O(n log₂ n)
 o Pf. (by induction on n)
 ▪ Base case n = 1
 ▪ Inductive hypothesis: T(n) = O(n log₂ n)
 ▪ Goal: show that T(2ⁿ) = O(2ⁿ log₂ 2ⁿ)

\[
T(2ⁿ) = 2T(n) + 2ⁿ
\]

= 2ⁿlog₂ n + 2ⁿ

= 2ⁿlog₂ (2ⁿ) - 1 + 2ⁿ

= 2ⁿlog₂ (2ⁿ)

• Analysis of mergesort recurrence
 o Claim. If T(n) satisfies the recurrence, then T(n) ≤ n \lceil log₂ n \rceil
 o Pf. (by induction on n)
 ▪ Base case: n = 1
 ▪ Define \(n₁ = \left\lfloor \frac{n}{2} \right\rfloor, n₂ = \left\lceil \frac{n}{2} \right\rceil \)
 ▪ Induction step: assume true for 1, 2, ..., n – 1

\[
T(n) ≤ T(n₁) + T(n₂) + n
\]

= \(n₁ \left\lceil \log n₁ \right\rceil + \left\lfloor \log n₂ \right\rceil + n \)

= \(n₁ \left\lceil \log n₁ \right\rceil + \left\lfloor \log n₂ \right\rceil + n \)

= \(n₁ \left\lceil \log n₂ \right\rceil + n \)

= n(\log n₂ - 1) + n

\[
\frac{n₂}{n/2}
\]

≤ \(2\left\lfloor \frac{\log n₂}{2} \right\rceil + n²/2 \)

≤ \(2\left\lfloor \frac{\log n₂}{2} - 1 \right\rceil + n²/2 \)

⇒ \log n₂ ≤ \left\lfloor \log n \right\rceil - 1

• Counting inversions
 o Counting inversions
 ▪ Similarity metric: number of inversions between two sequences
 ▪ Items i and j are inverted if i < j, but aᵢ > aⱼ.
 ▪ Brute force: check all \(\Theta(n^2) \) pairs i and j.
• Divide and conquer

\[
\begin{array}{cccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Divide: \(O(1) \).

\[
\begin{array}{cccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Conquer: \(2T(n/2) \).

5 blue-blue inversions
8 green-green inversions

9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Combine: ???

Total = 5 + 8 + 9 = 22.

- Divide: separate list into two pieces
- Conquer: recursively count inversions in each half
- Combine: count inversions where \(a_i \) and \(a_j \) are in different halves, and return sum of three quantities
 - Assume each half is sorted
 - Count inversions where \(a_i \) and \(a_j \) are in different halves
 - Merge two sorted halves into a sorted whole (maintains sorted invariant)

\[
\begin{array}{cccccccc}
3 & 7 & 10 & 14 & 18 & 19 \\
6 & 11 & 16 & 17 & 23 & 25 \\
\end{array}
\]

13 blue-green inversions: \(6 + 3 + 2 + 2 + 0 + 0 \)

Count: \(O(1) \).

\[
\begin{array}{cccccccc}
2 & 3 & 7 & 10 & 11 & 14 & 16 & 17 & 18 & 19 & 23 & 25 \\
\end{array}
\]

Merge: \(O(n) \).

\[
I(n) \leq I\left(\lceil n/2 \rceil \right) + I\left(\lceil n/2 \rceil \right) + O(n) \Rightarrow I(n) = O(n \log n)
\]

• Implementation
 - Pre-condition. (Merge-and-Count) A and B are sorted.
 - Post-condition. (Sort-and-Count) L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L

    divide the list into two halves A and B
    \( (r_A, A) = \) Sort-and-Count(A) \\
    \( (r_B, B) = \) Sort-and-Count(B) \\
    \( (r, L) = \) Merge-and-Count(A, B) \\

    return \( r = r_A + r_B + r \) and the sorted list L
}
```

Closest pair of points

• Closest pair
 - Given \(n \) points in the plane, find a pair with smallest Euclidean distance between them.
 - A fundamental geometric primitive
 - Brute force. Check all pairs of points \(p \) and \(q \) with \(\Theta(n^2) \) comparisons.
 - Assumption. (to make presentation cleaner) No two points have same x coordinate.

• First attempt
 - Divide. Sub-divide region into 4 quadrants.
- **Obstacle.** Impossible to ensure $\frac{n}{4}$ points in each piece.

 ![Obstacle Diagram]

- **Algorithm.**
 - **Divide.** Draw vertical line L so that roughly $\frac{n}{2}$ points on each side.
 ![Divide Diagram]
 - **Conquer.** Find closest pair in each side recursively.
 ![Conquer Diagram]
 - **Combine.** Find closest pair with one point in each side. (seems like $\Theta(n^2)$)
 ![Combine Diagram]

- **Return best of 3 solutions.**
- **Find closest pair with one point on each side, assuming that distance < δ**
 ![Distance Less Than Delta Diagram]

- **Observation.** Only need to consider points within δ of line L
 ![Observation Diagram]
- Sort points in 2δ-strip by their y coordinate.

- Only check distances of those within 11 positions in sorted list!

- **Def.** Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate

- **Claim.** If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.
 - **Pf.**
 - No two points lie in same $\frac{\delta}{2}$ by $\frac{\delta}{2}$ box.
 - Two points at least 2 rows apart have distance $\geq 2\left(\frac{\delta}{2}\right)$.

- **Fact.** Still true if we replace 12 with 7.

- Closest pair algorithm

  ```
  Closest-Pair(p_1, ..., p_n) {
    Compute separation line $L$ such that half the points are on one side and half on the other side.
    $\delta_1 = \text{Closest-Pair(left half)}$
    $\delta_2 = \text{Closest-Pair(right half)}$
    $\delta = \min(\delta_1, \delta_2)$
    Delete all points further than $\delta$ from separation line $L$
    Sort remaining points by $y$-coordinate.
    Scan points in $y$-order and compare distance between each point and next 11 neighbors. If any of these distances is less than $\delta$, update $\delta$.
    return $\delta$.
  }
  ```
- **Running time.** \(T(n) \leq 2T\left(\frac{n}{2}\right) + O(n \log n) \rightarrow T(n) = O(n \log^2 n) \)

- Can we achieve \(O(n \log n) \)? Yes.
 - Don’t sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by \(y \), and all points sorted by \(x \) coordinate.
 - Sort by merging two pre-sorted lists.
 - \(T(n) \leq T\left(\frac{n}{2}\right) + O(n) \rightarrow T(n) = O(n \log n) \)
Chapter 6 – Dynamic Programming

Algorithmic Paradigms

- **Greedy.** Build up a solution incrementally, myopically optimising some local criterion.
- **Divide-and-conquer.** Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problem to form solution to original problem.
- **Dynamic programming.** Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.
- Bellman (1950s) pioneered the systematic study of dynamic programming

Weighted interval scheduling

- Weighted interval scheduling problem
 - Job \(j \) starts at \(s_j \), finishes at \(f_j \), and has weight or value \(v_j \).
 - Two jobs are compatible if they don’t overlap.
 - Goal: find maximum weight subset of mutually compatible jobs.

- Unweighted interval scheduling review
 - Recall that greedy algorithm works if all weights are 1.
 - **Observation.** Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

- Weighted interval scheduling
 - **Notation.** Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).
 - **Def.** \(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).
 - **Ex.** \(p(8) = 5, p(7) = 3, p(2) = 0 \)

- Dynamic programming: binary choice
 - **Notation.** \(\text{OPT}(j) \) = value of optimal solution to the problem consisting of job requests 1, 2, ..., \(j \)
 - Each case has an optimal substructure:
 - Case 1: \(\text{OPT} \) selects job \(j \).
 - Can’t use incompatible jobs \(p(j) + 1, p(j) + 2, \ldots, j - 1 \)
 - Must include optimal solution consisting of remaining compatible jobs 1, 2, ..., \(p(j) \)
 - Case 2: \(\text{OPT} \) does not select job \(j \).
• Must include optimal solution consisting of remaining compatible jobs 1, 2, ..., j – 1

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left\{v_j + OPT(j), OPT(j-1)\right\} & \text{otherwise}
\end{cases}
\]

• Brute force algorithm

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 < f_2 < \ldots < f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

Compute-Opt(\(j \)) {
 if (\(j = 0 \))
 return 0
 else
 return \(\max(v_j + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1)) \)
}

- **Observation.** Recursive algorithm fails spectacularly because of redundant sub-problems \(\rightarrow \) exponential algorithms.

- **Ex.** Number of recursive calls for family of “layered” instances grows like Fibonacci sequence.

\[\text{p(0)=0, p(1)=2, p(2)=3, p(3)=4, p(4)=5} \]

- **Memoisation.** Store results of each sub-problem in a cache; lookup as needed

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 < f_2 < \ldots < f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

for \(j = 1 \) to \(n \)
 \(M[j] = \text{empty} \) \(\leftarrow \) global array
 \(M[j] = 0 \)

M-Compute-Opt(\(j \)) {
 if (\(M[j] \) is empty)
 \(M[j] = \max(v_j + \text{M-Compute-Opt}(p(j)), \text{M-Compute-Opt}(j-1)) \)
 return \(M[j] \)
}

- **Running time**
 - **Claim.** Memoised version of algorithm takes exactly \(O(n \log n) \) time.
 - Sort by finish time: \(O(n \log n) \)
 - Computing \(p(\cdot) \): \(O(n) \) after sorting by starting time.
 - M-Compute-Opt(\(j \)): each invocation takes \(O(1) \) time and either:
 - Returns an existing value \(M[j] \), or
 - Fills in one new entry \(M[j] \) and makes two recursive calls
 - Progress measure \(\Phi = \# \) nonempty entries of \(M[] \)
 - Initially \(\Phi = 0 \), throughout \(\Phi \leq n \)
 - Filling in new entry increases \(\Phi \) by 1 \(\rightarrow \) at most \(2n \) recursive calls.
 - **Remark.** \(O(n) \) if jobs are pre-sorted by start and finish times.

- **Automated memorisation.** Many functional programming languages have built-in support for memorisation

- **Finding a solution**
 - Dynamic programming algorithms compute optimal value. What if we want the solution itself?
Do some post-processing. # of recursive calls \(\leq n \rightarrow O(n) \)

```
Run W-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
  if (j == 0)
    output nothing
  else if (v_j + M[p(j)] > M[j-1])
    print j
    Find-Solution(p(j))
  else
    Find-Solution(j-1)
}
```

Bottom-up dynamic programming. Unwind recursion

- **Knapsack Problem**
 - Knapsack problem
 - Given \(n \) objects and a “knapsack”
 - Item \(i \) weighs \(w_i > 0 \) kilograms, and has value \(v_i > 0 \)
 - Knapsack has capacity of \(W \) kilograms
 - Goal: fill knapsack to maximise total value.
 - Ex. \{3, 4\} has value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>7</td>
</tr>
</tbody>
</table>

 - Greedy solution: repeatedly add item with maximum ratio \(\frac{v_i}{w_i} \)
 - Ex. \{5, 2, 1\} achieves only value = 35 \(\rightarrow \) greedy is not optimal

 - Dynamic programming: false start
 - **Def.** \(OPT(i) \) max profit subset of items 1, ..., \(i \).
 - Case 1: \(OPT \) does not select item \(i \).
 - \(OPT \) selects best of 1, 2, ..., \(i-1 \)
 - Case 2: \(OPT \) selects item \(i \).
 - Accepting item \(i \) does not immediately imply that we will have to reject other items.
 - Without knowing what other items were selected before \(i \), we don’t even know if we have enough room for \(i \).
 - Conclusion: need more sub-problems.

 - Dynamic programming: adding a new variable
 - **Def.** \(OPT(i, w) \) max profit subset of items 1, ..., \(i \) with weight limit \(w \).
 - Case 1: \(OPT \) does not select item \(i \).
 - \(OPT \) selects best of \{1, 2, ..., \(i-1 \)\} using weight limit \(w \)
 - Case 2: \(OPT \) selects item \(i \).
 - New weight limit = \(w - w_i \)
 - \(OPT \) selects best of \{1, 2, ..., \(i-1 \)\} using this new weight limit
• Bottom-up solution: fill up an \(n \)-by-\(W \) array

```
Input: \( n, W, x_1, \ldots, x_n, y_1, \ldots, y_n \)
for \( w = 0 \) to \( W \)
  \( M[0, w] = 0 \)
for \( i = 1 \) to \( n \)
  for \( w = 1 \) to \( W \)
    if \( w > x_i \)
      \( M[i, w] = M[i-1, w-1] \)
    else
      \( M[i, w] = \min \{ M[i-1, w], w + M[i-1, w-x_i] \} \)
return \( M[n, W] \)
```

• Running time. \(\Theta(nW) \)
 o Not polynomial in input size – “pseudo-polynomial”
 o Decision version of Knapsack is NP-complete.

• Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum.

Sequence alignment

• Sequence alignment. How similar are two strings, say \(\text{occurrance} \) and \(\text{occurrence} \)?

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
<th>a</th>
<th>r</th>
<th>m</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>a</td>
<td>r</td>
<td>m</td>
<td>a</td>
<td>m</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>r</td>
<td>m</td>
<td>a</td>
<td>m</td>
<td>a</td>
</tr>
</tbody>
</table>

- **Goal:** given two strings \(X = x_1 x_2 \ldots x_m \) and \(Y = y_1 y_2 \ldots y_n \) find alignment of minimum cost
- **Def.** An alignment \(M \) is a set of ordered pairs \(x_i - y_j \) such that each item occurs in at most one pair and no crossings.
- **Def.** The pair \(x_i - y_j \) and \(x_i' - y_j' \) **cross** if \(i < i' \) but \(j > j' \)

\[
\text{cost}(M) = \sum_{(x_i, y_j)} \alpha_{x_i, y_j} + \sum_{\text{gap}} \delta + \sum_{\text{match}} \delta
\]

• Problem structure
 - **Def.** \(\text{OPT}(i, j) = \) min cost of aligning strings \(x_1 x_2 \ldots x_i \) and \(y_1 y_2 \ldots y_j \)
 - **Case 1:** OPT matches \(x_i - y_j \).
 - Pay mismatch for \(x_i - y_j \) + min cost of aligning two strings \(x_1 x_2 \ldots x_{i-1} \) and \(y_1 y_2 \ldots y_{j-1} \)
 - **Case 2a:** OPT leaves \(x_i \) unmatched.
 - Pay gap for \(x_i \) and min cost of aligning \(x_1 x_2 \ldots x_{i-1} \) and \(y_1 y_2 \ldots y_j \)
 - **Case 2b:** OPT leaves \(y_j \) unmatched.
 - Pay gap for \(y_j \) and min cost of aligning \(x_1 x_2 \ldots x_i \) and \(y_1 y_2 \ldots y_{j-1} \)

\[
\text{OPT}(i, j) = \begin{cases}
\delta & \text{if } i = 0 \\
\alpha_{x_i, y_j} + \text{OPT}(i-1, j-1) & \text{if } i > 0 \\
\min(\delta + \text{OPT}(i-1, j), \delta + \text{OPT}(i, j-1)) & \text{otherwise}
\end{cases}
\]
• Algorithm

```java
Sequence-Alignment(m, n, x₁x₂...xₘ, y₁y₂...yₙ, δ, α) |
  for i = 0 to m
    M[0, i] = iα
  for j = 0 to n
    M[j, 0] = jα
  for i = 1 to m
    for j = 1 to n
      M[i, j] = min(α(xᵢ, yⱼ) + M[i-1, j-1],
                  δ = M[i-1, j],
                  δ = M[i, j-1])
  return M[m, n]
```

- **Analysis.** $Θ(mn)$ time and space
 - English words or sentences: $m, n \leq 10$
 - Computational biology: $m = n = 100,000$. Memory requirements too large

Sequence alignment in linear space

- Can we avoid using quadratic space?
 - **Easy.** Optimal value in $O(m + n)$ space and $O(mn)$ time.
 - Compute $OPT(i, \cdot)$ from $OPT(i-1, \cdot)$
 - No longer a simple way to recover alignment itself
 - **Theorem.** [Hirschberg 1975] Optimal alignment in $O(m + n)$ space and $O(mn)$ time.
 - Clever combination of divide-and-conquer and dynamic programming.
 - Inspired by idea of Savitch from complexity theory.

- Edit distance graph.
 - Let $f(i, j)$ be shortest path from $(0, 0)$ to (i, j).
 - Observation: $f(i, j) = OPT(i, j)$.

 ![Edit distance graph](image)

 - Can compute $f(\cdot, j)$ for any j in $O(mn)$ time and $O(m + n)$ space.

 ![Edit distance graph](image)

 - Let $g(i, j)$ be shortest path from (i, j) to (m, n).

 ![Edit distance graph](image)
- Can compute by reversing the edge orientations and inverting the roles of $(0, 0)$ and (m, n)

- Can compute $g(\cdot, j)$ for any j in $O(mn)$ time and $O(m + n)$ space.

- **Observation 1.** The cost of the shortest path that uses (i, j) is $f(i, j) + g(i, j)$

- **Observation 2.** Let q be an index that minimises $f(q, \frac{n}{2}) + g(q, \frac{n}{2})$.

 Then the shortest path from $(0, 0)$ to (m, n) uses $(q, \frac{n}{2})$.

- **Divide:** find index q that minimises $f(q, \frac{n}{2}) + g(q, \frac{n}{2})$ using DP. Align x_q and $y_{n/2}$.

- **Conquer:** recursively compute optimal alignment in each piece.
Theorem. Let $T(m, n) = \max$ running time on strings of length at most m and n. $T(m, n) = O(mn \log n)$.

Remark. Analysis is not tight because two sub-problems are of size $(q, \frac{n}{2})$ and $(m - q, \frac{n}{2})$.

Running time analysis

Theorem. Let $T(m, n) = \max$ running time on strings of length at most m and n. $T(m, n) = O(mn \log n)$.

Pf. (by induction on n)

- $O(mn)$ time to compute $f(\cdot, \frac{n}{2})$ and $g(\cdot, \frac{n}{2})$ and find index q.
- $T(q, \frac{n}{2}) + T(m - q, \frac{n}{2})$ time for two recursive calls.
- Choose constant c so that:

 \[
 \begin{aligned}
 T(m, 2) &\leq cm \\
 T(2, n) &\leq cm \\
 T(m, n) &\leq cmn + T(q, n/2) + T(m - q, n/2)
 \end{aligned}
 \]

 - Base cases: $m = 2$ or $n = 2$.
 - Inductive hypothesis: $T(m, n) \leq 2cmn$.

Shortest Paths

- **Shortest path problem.** Given a directed graph $G = (V, E)$ with edge weights c_{vw} (negative weights allowed), find the shortest path from node s to node t.
- **Ex.** Nodes represent agents in a financial setting, and c_{vw} is cost of transaction in which we buy from agent v and sell immediately to w.
- **Failures:**
 - Dijkstra. Fails on negative edge costs
 - Re-weighting. Adding a constant to every edge weight can fail.

- **Shortest paths: negative cost cycles**
 - If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.

 - **Def.** $OPT(i, v) =$ length of shortest v-t path P using at most i edges.
 - Case 1. P uses at most $i - 1$ edges.
 - $OPT(i, v) = OPT(i - 1, v)$
 - Case 2. P uses exactly i edges.
 - If (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most $i - 1$ edges.
\[
OPT(i, v) = \begin{cases}
0 & \text{if } i = 0 \\
\min \left[OPT(i-1, v), \min_{(v, w) \in E} \left(OPT(i-1, w) + c_{vw} \right) \right] & \text{otherwise}
\end{cases}
\]

Remark. By previous observation, if no negative cycles, then \(OPT(n-1, v) = \text{length of shortest v-t path.}\)

- **Implementation**

```java
 Shortest-Path(G, t) {
     foreach node v ∈ V
         M[i, v] ← ∞
     M[0, t] ← 0
     for i = 1 to n-1
         foreach node v ∈ V
             M[i, v] ← M[i-1, v]
         foreach edge (v, w) ∈ E
             M[i, v] ← min { M[i, v], M[i-1, w] + c_{vw} } 
 }
```

- **Analysis.** \(\Theta(mn)\) time, \(\Theta(n^2)\) space.
- Finding the shortest paths. Maintain a “successor” for each table entry

- **Practical improvements**
- Maintain only one array \(M[v] = \text{shortest v-t path that we have found so far.}\)
- No need to check edges of the form \((v, w)\) unless \(M[w]\) changed in previous iteration.
- **Theorem.** Throughout the algorithm, \(N[v] = \text{length of some v-t path, and after } i \text{ rounds of updates, the}
value \(M[v]\) is no larger than the length of shortest v-t path using \(\leq i\) edges.

- Overall impact.
 - Memory: \(O(m + n)\)
 - Running time: \(O(mn)\) worst case, but substantially faster in practice.

- **Bellman-Ford: efficient implementation**

```java
 Push-Based-Shortest-Path(G, s, t) {
     foreach node v ∈ V {
         M[v] ← ∞
         successor[v] ← φ
     }
     M[t] = 0
     for i = 1 to n-1 {
         foreach node w ∈ V {
             if \((v, w) \in E\) \(\text{and } (M[w] \text{ has been updated in previous iteration)}\) {
                 foreach node v such that \((v, w) \in E\) {
                     if \((M[v] > M[w] + c_{vw})\) {
                         M[v] ← M[w] + c_{vw}
                         successor[v] ← w
                     }
                 }
             }
         }
         If no M[w] \text{ value changed in iteration } i, \text{ stop.}
     }
 }
```

Distance Vector Protocol

- Used in communication network, where nodes are routers, edges are links and costs are delays
 - Dijkstra’s require global information of network, while Bellman-Ford uses only local knowledge of neighbours
 - Synchronisation. We don’t expect routers to run into a deadlock. The order in which each foreach loop executes is not important. Moreover, algorithm still converges even if updates are asynchronous.

- **Distance vector protocol**
 - Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions).
Algorithm: each router performs n separate computations, one for each potential destination node.

“Routing by rumour”

Caveat. Edge costs may change or fail completely during the algorithm

Path vector protocols: Link state routing

- Each router also stores the entire path – not just the distance and the first hop
- Based on Dijkstra’s algorithm
- Avoids “counting to infinity” problem, and related difficulties.
- Requires significantly more storage.
- Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF)

Negative Cycles in a Graph

- Detecting negative cycles
 - Lemma. If OPT(n,v) = OPT(n – 1, v) for all v, then no negative cycles.
 - Pf. Bellman-Ford algorithm
 - Lemma. If OPT(n,v) < OPT(n – 1, v) for some node v, then (any) shortest path from v to t contains a cycle W. Moreover, W has negative cost.
 - Pf. (by contradiction)
 - Since OPT(n,v) < OPT(n – 1, v), we know P has exactly n edges.
 - By pigeonhole principle, P must contain a directed cycle W.
 - Deleting W yields a v – t path with < n edges \(\rightarrow W \) has negative cost.

- Theorem. Can detect negative cost cycle in O(mn) time.
 - Add new node t and connect all nodes to t with 0-cost edge.
 - Check if OPT(n,v) = OPT(n – 1, v) for all nodes v.
 - If yes, then no negative cycles
 - If no, then extract cycle from shortest path from v to t

Application: finding an arbitrage opportunity in currency exchange

Summary

- Bellman-Ford. O(mn) time, O(m + n) space.
- Run Bellman-Ford for n iterations (instead of n – 1)
- Upon termination, Bellman-Ford successor variables trace a negative cycle if one exists.
- See p.288 for improved version and early termination rule.
Chapter 7 – Network Flow

Maximum flow and minimum cut

- Max flow and min cut
 - Rich algorithmic problems, with a beautiful duality
 - Cornerstone problems in combinatorial optimisation

- Flow network
 - Abstraction for material flowing through the edges
 - $G = (V,E)$ = directed graph, no parallel edges.
 - Two distinguished nodes: $s = \text{source}, t = \text{sink}$
 - $c(e)$ = capacity of edge e

- Cuts
 - **Def.** An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.
 - **Def.** The capacity of a cut (A, V) is: $\text{cap}(A, B) = \sum_{e \in A \rightarrow B} c(e)$

- **Min s-t cut problem.** Find an s-t cut of minimum capacity.
• Flows
 o **Def.** An s-t flow is a function that satisfies:
 - For each $e \in E$: $0 \leq f(e) \leq c(e)$ (capacity)
 - For each $v \in V = \{s, t\}$:
 $\sum_{e \in E \text{ into } v} f(e) = \sum_{e \in E \text{ out of } v} f(e)$ (conservation)
 o **Def.** The value of a flow f is:
 $v(f) = \sum_{e \in E \text{ out of } s} f(e)$

• Maximum flow problem. Find s-t flow of maximum value.

• Flows and cuts
 o **Flow value lemma.** Let f be any flow, and let (A, B) be any s-t cut. The net flow sent across the cut is equal to the amount leaving s.
 \[
 \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = v(f)
 \]

 o **Pf.**
 \[
 v(f) = \sum_{e \text{ out of } s} f(e)
 \]
 \[
 (\text{conservation: all terms except } v = s \text{ are zero}) = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ into } v} f(e) \right)
 \]
 \[
 = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)
 \]
Weak duality. Let f be any flow. For any s-t cut (A, B), we have $v(f)$ the value of the flow $\leq \text{cap}(A, B)$ the capacity of the cut.

- Pf.

$$
\begin{align*}
 v(f) &= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \\
 &\leq \sum_{e \text{ out of } A} f(e) \\
 &\leq \sum_{e \text{ out of } A} c(e) \\
 &= \text{cap}(A, B)
\end{align*}
$$

- Certificate of optimality

 - Corollary. Let f be any flow, and let (A, B) be any cut. If $v(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

Towards a max flow algorithm

- Greedy algorithm.
 - Start with $f(e) = 0$ for all edge $e \in E$
 - Find an s-t path P where each edge has $f(e) < c(e)$, i.e. not at capacity
 - Augment flow along path P.
 - Repeat until you get stuck
- But getting stuck might be a local optimum, not global optimum

- Residual graph: $G_f = (V, E_f)$
 - **Original edge**: $e = (u, v) \in E$. Flow $f(e)$, capacity $c(e)$
 - **Residual edge**: “undo” flow sent $e = (u, v), e^R = (v, u)$
 - **Residual capacity**: $e_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$
 - Residual edges with positive residual capacity
 - $E_f = \{e : f(e) < c(e)\} \cup \{e^R : e(e) > 0\}$

- Ford-Fulkerson algorithm

- **Augmenting path theorem.** Flow f is a max flow iff there are no augmenting paths.
- **Max-flow min-cut theorem.** [Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.
- **Proof strategy.** We prove both simultaneously by showing the TFAE:
 1. There exists a cut (A, B) such that $v(f) = \text{cap}(A, B)$
 2. Flow f is a max flow.
 3. There is no augmenting path relative to f.
- 1→2 This was the corollary to weak duality lemma
- 2→3 Contrapositive: If \exists an augmenting path to a flow f, f can be improved by sending flow along it.
- 3→1 Let f be flow with no augmenting paths; A be set of vertices reachable from s in residual path.

By definition of $A, s \in A$. By definition of $f, t \notin A$.

$$v(f) = \sum_{e \in \text{in}(A)} f(e) - \sum_{e \in \text{out}(A)} f(e) = \sum_{e \in \text{out}(A)} c(e) - \text{cap}(A, B)$$

Running time

- Assumption. All capacities are integers between 1 and C.
- **Invariant.** Every flow value \(f(e) \) and every residual capacities \(c_f(e) \) remains an integer throughout the algorithm
- **Theorem.** The algorithm terminates in at most \(v(f^*) \leq nC \) iterations.
 - Pf. Each augmentation increase value by at least 1
- **Corollary.** If \(C = 1 \), Ford-Fulkerson runs in \(O(mn) \) time.
- **Integrality theorem.** If all capacities are integers, then there exists a max flow \(f \) for which every flow value \(f(e) \) is an integer.
 - Pf. Since algorithm terminates, theorem follows from invariant.

Choosing good augmenting paths
- **Ford-Fulkerson:** exponential number of augmentations
 - If max capacity is \(C \), then the algorithm can take \(C \) iterations.
 - Selection of augmenting paths may lead to polynomial or exponential algorithms
 - Need to choose augmenting paths efficiently and with few iterations.
- **Edmonds-Karp 1972, Dinitz 1970**
 - Choose augmenting paths with max bottleneck capacity
 - Sufficiently large bottleneck capacity
 - Fewest number of edges
- **Capacity scaling**
 - **Intuition.** Choosing path with highest bottleneck capacity increases flow by max possible amount
 - Don’t worry about finding the absolute highest bottleneck path
 - Maintain scaling parameter \(\Delta \)
 - Let \(G_f(\Delta) \) be the subgraph of the residual graph consisting of only arcs with capacity at least \(\Delta \)
 - **Correctness**
- **Assumption.** All edge capacities are integers between 1 and C
- **Integrality invariant.** All flow and residual capacities are integral
- **Correctness.** If the algorithm terminates, then \(f \) is a max flow
- **Pf.**
 - By integrality invariant, when \(\Delta = 1 \rightarrow G_f(\Delta) = G_t \)
 - Upon termination of \(\Delta = 1 \) phase, there are no augmenting paths
- **Running time**
 - **Lemma 1.** The outer while loop repeats \(1 + \lfloor \log_2 C \rfloor \) times
 - **Pf.** Initially \(C \leq \Delta \leq 2C. \Delta \) decreases by a factor of 2 each iteration
 - **Lemma 2.** Let \(f \) be the flow at the end of a \(\Delta \)-scaling phase. Then the value of the maximum flow is at most \(v(f) + m \).
 - **Pf.** (almost identical to proof of max-flow min-cut theorem)
 - **Lemma 3.** There are at most \(2m \) augmentations per scaling phase.
 - Let \(f \) be the flow at the end of the previous scaling phase.
 - By Lemma 2, \(v(f^\ast) \leq v(f) + m(2\Delta) \).
 - Each augmentation in a \(\Delta \)-phase increases \(v(f) \) by at least \(\Delta \)
- **Theorem.** The scaling max-flow algorithm finds a max flow in \(O(m \log C) \) augmentations. It can be implemented to run in \(O(m^2 \log C) \) time

Bipartite matching
- Matching
 - **Input.** Undirected graph \(G = (V, E) \)
 - **M \subseteq E** is a matching if each node appears in at most one edge in \(M \)
 - **Max matching.** Find a maximum cardinality matching
• Bipartite matching

 \[
 \begin{array}{c}
 1 & 2 & 3 & 4 & 5 \\
 \hline
 L & 6 & 7 & 8 & R
 \end{array}
 \]

 • Input. Undirected, bipartite graph \(G = (L \cup R, E) \)
 • \(M \subset E \) is a matching if each node appears in at most one edge in \(M \)
 • Max matching. Find a maximum cardinality matching

• Max flow formulation

 \[
 \begin{array}{c}
 1 & 2 & 3 & 4 & 5 \\
 \hline
 L & 6 & 7 & 8 & R
 \end{array}
 \]

 • Create digraph \(G' = (L \cup R \cup \{s, t\}, E') \)
 • Direct all edges from \(L \) to \(R \), and assign infinite (or unit) capacity.
 • Add source \(s \), and unit capacity edges from \(s \) to each node in \(L \)
 • Add sink \(t \), and unit capacity edges from each node in \(R \) to \(t \).

• Proof of correctness

 • **Theorem.** Max cardinality matching in \(G \) = value of max flow in \(G' \)

 \[
 \begin{array}{c}
 1 & 2 & 3 & 4 & 5 \\
 \hline
 L & 6 & 7 & 8 & R
 \end{array}
 \]

 • **Pf. \(\leq \)**

 • Given max matching \(M \) of cardinality \(k \)
 • Consider flow \(f \) that sends 1 unit along each of \(k \) paths.
 • \(f \) is a flow, and has cardinality \(k \).

 • **Pf. \(\geq \)**

 • Let \(f \) be a max flow in \(G' \) of value \(k \).
 • Integrality theorem \(\rightarrow k \) is integral and can assume \(f \) is 0-1.
Consider \(M = \) set of edges from \(L \) to \(R \) with \(f(e) = 1 \)
- Each node in \(L \) and \(R \) participates in at most one edge in \(M \)
- \(|M| = k \): consider cut \((L \cup s, R \cup t)\)

Perfect matching
- **Def.** A matching \(M \subseteq E \) is **perfect** if each node appears in exactly one edge in \(M \)
- **Notation.** Let \(S \) be a subset of nodes, and let \(N(S) \) be the set of nodes adjacent to nodes in \(S \).
- **Observation.** If a bipartite graph \(G = (L \cup R, E) \) has a perfect matching, then \(|N(S)| \geq |S| \) for all subsets \(S \subseteq L \)
 - **Pf.** Each node in \(S \) has to be matched to a different node in \(N(S) \)

Marriage theorem. [Frobenius 1917, Hall 1935]
- Let \(G = (L \cup R, E) \) be a bipartite graph with \(|L| = |R|\). Then, \(G \) has a perfect matching iff \(|N(S)| \geq |S| \) for all subsets \(S \subseteq L \)
 - **Pf. \(\rightarrow \):** This was the previous observation.
 - **Pf. \(\leftarrow \):** Suppose \(G \) does not have a perfect matching.
 - Formulate as a max flow problem and let \((A, B)\) be min cut in \(G' \)
 - By max-flow min-cut, \(\text{cap}(A, B) < |L| \)
 - Define \(L_A = L \cap A, L_B = L \cap B, R_A = R \cap A \)
 - \(\text{cap}(A, B) = |L_B| + |R_A| \)
 - Since min cut can't use \(\infty \) edges: \(N(L_A) \subseteq R_A \)
 - \(|N(L_A)| \leq |R_A| = \text{cap}(A, B) - |L_B| < |L| - |L_B| = |L_A| \)
 - Choose \(S = L_A \)

Running time – depends on max flow algorithm
- Generic augmenting path: \(O(m \text{ val}(f^*)) = O(mn) \)
- Capacity scaling: \(O(m^2 \log C) = O(m^2) \)
- Shortest augmenting path: \(O(mn^{1/2}) \)

Disjoint paths
- **Disjoint path problem.** Given a digraph \(G = (V, E) \) and two nodes \(s \) and \(t \), find the max number of edge-disjoint \(s-t \) paths.
- **Def.** Two paths are edge-disjoint if they have no edge in common.

- **Max flow formulation.** Assign unit capacity to every edge

- **Theorem.** Max number edge-disjoint s-t paths equals max-flow value
 - **Pf.** \(\leq \)
 - Suppose there are \(k \) edge-disjoint paths \(P_1, ..., P_k \)
 - Set \(f(e) = 1 \) if \(e \) participates in some path \(P_i \); else set \(f(e) = 0 \)
 - Since paths are edge-disjoint, \(f \) is a flow of value \(k \)

- **Pf.** \(\geq \)
 - Suppose max flow value is \(k \)
 - Integrality theorem \(\rightarrow \) there exists 0-1 flow \(f \) of value \(k \)
 - Consider edge \((s, u)\) with \(f(s, u) = 1 \)
 - By conservation, there exists an edge \((u, v)\) with \(f(u, v) = 1 \)
 - Continue until reach \(t \), always choosing a new edge
 - Produces \(k \) (not necessarily simple) edge-disjoint paths
 - Can eliminate cycles to get simple paths if desired

- **Network connectivity**

 - **Network connectivity.** Given a digraph \(G = (V, E) \) and two nodes \(s \) and \(t \), find min number of edges whose removal disconnects \(t \) from \(s \).
 - **Def.** A set of edges \(F \subseteq E \) disconnects \(t \) from \(s \) if all \(s \)-\(t \) paths uses at least one edge in \(F \)
 - **Theorem.** [Menger 1927] The max number of edge-disjoint \(s \)-\(t \) paths is equal to the min number of edges whose removal disconnects \(t \) from \(s \)
 - **Pf.** \(\leq \)
 - Suppose the removal of \(F \subseteq E \) disconnects \(t \) from \(s \), and \(|F| = k \)
 - All \(s \)-\(t \) paths use at least one edge of \(F \), hence the number of edge-disjoint paths is at most \(k \).
\begin{itemize}
\item Pf. \geq
\end{itemize}

- Suppose max number of edge-disjoint paths is \(k \)
- Then max flow value is \(k \)
- Max-flow min-cut \(\rightarrow \) cut \((A, B)\) of capacity \(k \)
- Let \(F \) be set of edges going from \(A \) to \(B \)
- \(|F| = k \) and disconnects \(t \) from \(s \)
Chapter 8 – NP and Computational Intractability

Polynomial-time reductions

<table>
<thead>
<tr>
<th>Yes</th>
<th>Probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest path</td>
<td>Longest path</td>
</tr>
<tr>
<td>Matching</td>
<td>3D-matching</td>
</tr>
<tr>
<td>Min cut</td>
<td>Max cut</td>
</tr>
<tr>
<td>2-SAT</td>
<td>3-SAT</td>
</tr>
<tr>
<td>Planar 4-color</td>
<td>Planar 3-color</td>
</tr>
<tr>
<td>Bipartite vertex cover</td>
<td>Vertex cover</td>
</tr>
<tr>
<td>Primality testing</td>
<td>Factoring</td>
</tr>
</tbody>
</table>

- Classify problems
 - Desiderata. Classify problems into those that can be solved in polynomial-time and those that cannot
 - Provably requires exponential-time
 - Huge number of fundamental problems have defied classification for decades – appears to be different manifestations of one really hard problem.

- Polynomial-time reduction
 - Desiderata. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?
 - Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of x can be solved using:
 - Polynomial number of standard computation steps, plus
 - Polynomial number of calls to oracle that solves problem Y
 - Oracle = computational model supplemented by special piece of hardware that solves instances of Y in a single step
 - Notation. $X \leq_P Y$
 - Remarks.
 - We pay for time to write down instance sent to black box \rightarrow instance of Y must be of polynomial size.
 - Note: Cook reducibility in contrast to Karp reductions
 - Purpose. Classify problems according to relative difficulty
 - Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.
 - Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.
 - Establish equivalence (up to cost of reduction). If $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$.

Reduction by simple equivalence

- Independent set. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S?
 - Ex. Is there an independent set of size ≥ 6? Yes.
 - Ex. Is there an independent set of size ≥ 7? No.

- Vertex cover. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S?
 - Ex. Is there a vertex cover of size ≤ 4? Yes.
 - Ex. Is there a vertex cover of size ≤ 3? No.
Claim. Vertex Cover \(\equiv_P \) Independent Set.

Pf. We show \(S \) is an independent set iff \(V - S \) is a vertex cover

- Pf. \(\Rightarrow \)
 1. Let \(S \) be any independent set.
 2. Consider an arbitrary edge \((u, v)\).
 3. \(S \) independent \(\Rightarrow u \notin S \) or \(v \notin S \) \(\Rightarrow u \in V - S \) or \(v \in V - S \).
 4. Thus, \(V - S \) covers \((u, v)\).

- Pf. \(\Leftarrow \)
 1. Let \(V - S \) be any vertex cover.
 2. Consider two nodes \(u \in S \) and \(v \in S \).
 3. Observe that \((u, v) \notin E\) since \(V - S \) is a vertex cover.
 4. Thus, no two nodes in \(S \) are joined by an edge \(\Rightarrow S \) independent set.

Reduction from special case to general case

- **Set Cover.** Given a set \(U \) of elements, a collection \(S_1, S_2, \ldots, S_m \) of subsets of \(U \), and an integer \(k \), does there exist a collection of \(\leq k \) of these sets whose union is equal to \(U \)?

- **Claim.** Vertex Cover \(\leq_P \) Set Cover
 1. Pf. Given a vertex cover instance \(G = (V, E), k \), we construct a set cover instance whose size equals the size of the vertex cover instance.
 2. Construction.
 - Create set-cover instance: \(k = k \), \(U = E \), \(S_v = \{e \in E : e \text{ incident to } v\} \).
 - Set cover of size \(\leq k \) iff vertex cover of size \(\leq k \).

Reduction by encoding with gadgets

- **Satisfiability**
 1. **Literal.** A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \).
 2. **Clause.** A disjunction of literals. \(C_j = x_1 \lor \overline{x_2} \lor x_3 \).
 3. **Conjunctive normal form.** A propositional formula, a conjunction of clauses. \(\Phi = C_1 \land C_2 \land C_3 \land C_4 \).
 4. **SAT.** Given CNF formula \(\Phi \), does it have a satisfying truth assignment?
 5. **3-SAT:** SAT where each clause contains exactly 3 literals (each corresponding to a different variable).
 - Example: \((x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_4 \lor x_5) \land (x_6 \lor \overline{x_7} \lor x_8) \land (x_1 \lor x_2 \lor \overline{x_3})\).
 - Yes: \(x_1 \) is true, \(x_2 \) is false, \(x_3 \) is true.

- **3-SAT reduces to independent set**
 1. **Claim.** 3-SAT \(\leq_P \) Independent Set
o **Pf.** Given an instance Φ of 3-SAT, we construct an instance (G, k) of independent set with size k iff Φ is satisfiable

o **Construction.**

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle
- Connect literal to each of its negations

o **Pf. \rightarrow** Let S be independent set of size k.
 - S must contain exactly one vertex in each triangle
 - Set these literals to true (and any other variables in a consistent way)
 - Truth assignment is consistent and all clauses are satisfied.

o **Pf. \leftarrow** Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.

- **Basic reduction strategies**
 - Simple equivalence independent set \equiv_P vertex cover
 - Special case to general case vertex cover \leq_P set cover
 - Encoding with gadgets 3-SAT \leq_P independent set

- **Transitivity.** If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$
 - Pf idea. Compose the two algorithms
 - Ex. 3-SAT \leq_P independent set \leq_P vertex cover \leq_P set cover

- **Self reducibility**
 - **Decision problem.** Does there exist a vertex cover of size $\leq k$?
 - **Search problem.** Find vertex cover of minimum cardinality
 - **Self reducibility**
 - Search problem \leq_P decision version
 - Applies to all (NP-complete) problems in this chapter
 - Justifies our focus on decision problems
 - Ex. Find min cardinality vertex cover
 - (binary) search for cardinality k^* of min vertex cover
 - Find a vertex v such that $G - \{v\}$ has a vertex cover of size $\leq k^* - 1$
 - Any vertex in any min vertex cover will have this property
 - Include v in the vertex cover
 - Recursively find a min vertex cover in $G - \{v\}$

Definition of NP

- **Decision problems**
 - X is a set of strings, and s is an instance of string
 - Algorithm A solves problem X: $A(s) = \text{yes}$ iff $s \in X$

- **Polynomial time.** Algorithm A runs in poly-time if for every string s, $A(s)$ terminates in at most $p(|s|)$ “steps”, where $P(\cdot)$ is some polynomial.

- **Definition of P**
- NP
 - Certifier views things from “managerial” viewpoint
 - Certifier doesn’t determine whether \(s \in X \) on its own. Rather, it checks a proposed proof \(t \) that \(s \in X \)
 - **Def.** Algorithm \(C(s, t) \) is a certifier for problem \(X \) if for every string \(s \), \(s \in X \) iff there exists a string \(t \) (“certificate” or “witness”) such that \(C(s, t) = \text{yes} \).
 - **NP.** Decision problems for which there exists a poly-time certifier.
 - **Remark.** \(NP \) stands for non-deterministic polynomial-time

- Certifiers and certificates: composite
 - **Composites.** Given an integer \(s \), is \(s \) composite?
 - Certificate. A non-trivial factor \(t \) of \(s \). Such a certificate exists iff \(s \) is composite. Moreover, \(|t| \leq |s| \).
 - Certifier.

```java
boolean C(s, t) {
    if (t = 1 or t = s)
        return false
    else if (s is a multiple of t)
        return true
    else
        return false
}
```

- Ex. Instance \(s = 437669 \); certificate \(t = 541 \) or \(809 \)
 - Conclusion. Composites is in NP

- Certifiers and certificates: 3-SAT
 - **SAT.** Given a CNF formula \(\Phi \), is there a satisfying assignment?
 - Certificate. An assignment of truth values to the \(n \) Boolean variables
 - Certifier. Check that each clause in \(\Phi \) has at least one true literal
 - Ex. Instance \((x_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (x_2 \lor \bar{x}_3 \lor \bar{x}_1) \) certificate: \(x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1 \)
 - Conclusion. SAT is in NP

- Certifiers and certificates: Hamiltonian cycle
 - **Ham-Cycle.** Given an undirected graph \(G = (V, E) \) does there exist a simple cycle \(C \) that visits every node?
 - Certificate. A permutation of the \(n \) nodes
 - Certifier. Check that the permutation contains each node in \(V \) exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

- Conclusion. Ham-cycle is in NP.

- **P, NP, EXP**
 - **P.** Decision problems for which there is a polynomial-time algorithm
 - **EXP.** Decision problems for which there is an exponential-time algorithm
- **NP.** Decision problems for which there is a polynomial-time certifier.

- **Claim.** $P \subseteq NP$
 - **Pf.** Consider any problem X in P
 - By definition, there exists a poly-time algorithm $A(s)$ that solves X
 - Certificate: $t = \varepsilon$, certifier $C(s, t) = A(s)$

- **Claim.** $NP \subseteq EXP$
 - **Pf.** Consider any problem X in NP
 - By definition, there exists a poly-time certifier $C(s, t)$ for X
 - To solve input s, run $C(s, t)$ on all strings t with $|t| \leq p(|s|)$
 - Return yes, if $C(s, t)$ returns yes for any of these

- **P versus NP**
 - Does $P = NP$? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 - If yes: efficient algorithms for 3-colour, TSP, factoring, SAT, ... (factoring would break RSA cryptography)
 - If no: no efficient algorithms
 - Consensus opinion: probably no

NP-Completeness

- **Polynomial transformation**
 - **Def.** Problem X polynomial reduces (Cook) to problem Y if arbitrary instances of problem X can be solved using:
 - Polynomial number of standard computational steps, plus
 - Polynomial number of calls to oracle that solves problem Y
 - **Def.** Problem X polynomial transforms (Karp) to problem Y if given any input x to X, we can construct an input y such that x is a yes instance of X iff y is a yes instance of Y.
 - Require $|y|$ to be of size polynomial in $|x|$?
 - **Note.** Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X. Almost all previous reductions were of this form

- **NP-complete**
 - **NP-complete.** A problem Y in NP with the property that for every problem X in NP, $X \leq_P Y$
 - **Theorem.** Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff $P = NP$
 - **Pf.** \rightarrow If $P = NP$ then Y can be solved in poly-time since Y is in NP
 - **Pf.** \leftarrow Suppose Y can be solved in poly-time
 - Let X be any problem in NP. Since $X \leq_P Y$, we can solve X in poly-time. This implies $NP \subseteq P$
 - We already know $P \subseteq NP$. Thus $P = NP$
• Circuit satisfiability

 o Circuit-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?
 o Circuit-SAT is the “first” NP-complete problem
 o Theorem. Circuit-SAT is NP-complete [Cook 2971, Levin 1973]
 o Pf. (Sketch)
 ▪ Any algorithm that takes a fixed number of bits \(n \) as input and produces a yes/no answer can be represented by such a circuit. Moreover, if algorithm takes poly-time, then circuit is poly-size.
 ▪ (Sketchy part of proof, fixing the number of bits is important, and reflects basic distinction between algorithms and circuits)
 ▪ Consider some problem \(X \) in NP. It has a poly-time certifier \(C(s, t) \). To determine whether \(s \) is in \(X \), need to know if there exists a certificate \(t \) of length \(p(|s|) \) such that \(C(s, t) = \text{yes} \)
 ▪ View \(C(s, t) \) as an algorithm on \(|s| + p(|s|) \) bits (input \(s \), certificate \(t \)) and convert it into a poly-size circuit \(K \).
 • First \(|s| \) bits are hard-coded with \(s \)
 • Remaining \(p(|s|) \) bits represent bits of \(t \)
 ▪ Circuit \(K \) is satisfiable iff \(C(s, t) = \text{yes} \)
 o Ex. Construction below creates a circuit \(K \) whose inputs can be set so that \(K \) outputs true iff graph \(G \) has an independent set of size 2.

• Establishing NP-completeness
 o Remark. Once we establish first “natural” NP-complete problem, others fall like dominoes.
 o Recipe to establish NP-completeness of problem \(Y \).
 ▪ Show that \(Y \) is in NP
 ▪ Choose an NP-complete problem \(X \)
 ▪ Probe that \(X \leq_p Y \)
 o Justification. If \(X \) is an NP-complete problem, and \(Y \) is a problem in NP with the property that \(X \leq_p Y \) then \(Y \) is NP-complete.
Pf. Let \(W \) be any problem in \(\text{NP} \). Then \(W \leq_p X \leq_p Y \) (by definition of \(\text{NP-complete} \), and by assumption)

- By transitivity, \(W \leq_p Y \)
- Hence \(Y \) is \(\text{NP-complete} \)

- **3-SAT** is \(\text{NP-complete} \)
 - **Theorem.** 3-SAT is in \(\text{NP-complete} \).
 - **Pf.** Suffices to show that circuit-SAT \(\leq_p \text{3-SAT} \) since 3-SAT is in \(\text{NP} \).

 - Let \(K \) be any circuit.
 - Create a 3-SAT variable \(x_i \) for each circuit element \(i \)
 - Make circuit compute correct values at each node:
 - \(x_2 = \neg x_3 \) \(\rightarrow \) add 2 clauses: \(x_2 \lor x_3, \neg x_2 \lor \neg x_3 \)
 - \(x_4 = x_4 \lor x_5 \) \(\rightarrow \) add 3 clauses: \(x_1 \lor \neg x_4, x_1 \lor \neg x_5, x_1 \lor x_4 \lor x_5 \)
 - \(x_0 = x_1 \lor x_2 \) \(\rightarrow \) add 3 clauses: \(\neg x_0 \lor x_1, \neg x_0 \lor x_2, x_0 \lor \neg x_1 \lor \neg x_2 \)
 - Hard-coded input values and output value.
 - \(x_5 = 0 \) \(\rightarrow \) add 1 clause: \(\neg x_5 \)
 - \(x_0 = 1 \) \(\rightarrow \) add 1 clause: \(x_0 \)
 - Final step: turn clauses of length < 3 into clauses of length exactly 3.

- **NP-completeness**
 - **Observation.** All problems below are \(\text{NP-complete} \) and polynomial reduce to one another!

- 6 basic genres of \(\text{NP-complete} \) problems an paradigmatic examples
 - Packing problems: set-packing, independent set
 - Covering problems: set-cover, vertex-cover
 - Constraint satisfaction problems: SAT, 3-SAT
 - Sequencing problems: Hamiltonian-cycle, TSP
 - Partitioning problems: 3D-Matching, 3-Colour
 - Numerical problems: Subset-sum, Knapsack

- Practice. Most \(\text{NP} \) problems are either known to be in \(\text{P} \) or \(\text{NP-complete} \)
- Notable exceptions. Factoring, graph isomorphism, Nash equilibrium
Sequencing problems

- **Hamiltonian cycle.** Given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V?
 - Yes: vertices and faces of a dodecahedron
 - No: bipartite graph with odd number of nodes:

- **Directed Hamiltonian Cycle.** Given a digraph $G = (V, E)$, does there exist a simple directed cycle Γ that contains every node in B?
 - **Claim.** \(\text{Dir-Ham-cycle} \leq_P \text{Ham-cycle} \)
 - **Pf.** Given a directed graph $G = (V, E)$, construct an undirected graph G' with $3n$ nodes.
 - **Pf. \(\Rightarrow\)**
 - Suppose G has a directed Hamiltonian cycle Γ
 - Then G' has an undirected Hamiltonian cycle (same order)
 - **Pf. \(\Leftarrow\)**
 - Suppose G' has an undirected Hamiltonian cycle Γ'
 - Γ' must visit nodes in G' using one of the following two orders:
 - ..., B, G, R, B, G, R, B, G, R, B, ...
 - Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one
 - **3-SAT reduces to directed Hamiltonian cycle**
 - **Claim.** \(\text{3-SAT} \leq_P \text{Dir-Ham-cycle} \)
 - **Pf.** Given an instance Φ of 3-SAT, we construct an instance of Dir-Ham-cycle that has Hamiltonian cycle iff Φ is satisfiable
o **Construction.** First, create graph that has 2^n possible truth assignments

- Given 3-SAT instance Φ with n variables x_i and k clauses
- Construct G to have 2^n Hamiltonian cycles.
- Intuition. Traverse path i from left to right \leftrightarrow set variable $x_i = 1$
- For each clause, add a node and 6 edges:

o **Claim.** Φ is satisfiable iff G has a Hamiltonian cycle
 - **Pf. \Rightarrow**
 - Suppose 3-SAT instance has satisfying assignment x^*
 - Then, define Hamiltonian cycle in G as follows:
 o If $x_i^* = 1$, traverse row i from left to right
 o If $x_i^* = 0$, traverse row i from right to left
 o For each clause C_j, there will be at least one row i in which we are going in “correct” direction to splice node C_j into four
 - **Pf. \Leftarrow**
 - Suppose G has a Hamiltonian cycle Γ
 - If Γ enters clause node C_j, it must depart on mate edge
 o Thus, nodes immediately before and after C_j are connected by an edge e in G
 o Removing C_j from cycle, and replacing it with edge e yields Hamiltonian cycle on $G - \{C_j\}$
 - Continuing in this way, we are left with Hamiltonian cycle Γ' in $G = \{C_1, C_2, \ldots, C_k\}$
 - Set $x_i^* = 1$ iff Γ' traverses row i left to right
 - Since Γ visits each clause node C_j, at least one of the paths is traversed in “correct” direction, and each clause is satisfied

- **Longest path**
 o **Shortest-path.** Given a digraph $G = (V, E)$, does there exist a simple path of length at most k edges?
 o **Longest-path.** Given a digraph $G = (V, E)$, does there exist a simple path of length at least k edges?
 o **Claim.** 3-SAT \leq_p Longest-path
- **Pf 1.** Redo proof for Dir-Ham-cycle, ignoring back-edge from t to s
- **Pf 2.** Show Ham-cycle \leq_P Longest-path

Travelling salesman problem

- **TSP.** Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?
 - All 13,509 cities in US with a population of at least 500, and the optimal TSP tour:

- **Ham-cycle.** Given a graph $G = (V, E)$, does there exist a simple cycle that contains every node in V?
- **Claim.** Ham-cycle \leq_P TSP
- **Pf.**
 - Given instance $G = (V, E)$ of Ham-cycle, create n cities with distance function:
 \[
 d(u, v) = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 2 & \text{if } (u, v) \notin E
 \end{cases}
 \]
 - TSP instance has tour of length $\leq n$ iff G is Hamiltonian
- **Remark.** TSP instance in reduction satisfies Δ-inequality

Partitioning problems

- **3-Dimensional matching**
 - **3D-matching.** Given n instructors, n courses and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?
 - **3D-matching.** Given disjoint sets X, Y, Z each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?
 - **Claim.** 3-SAT \leq_P Independent-cover
 - **Pf.** Given an instance Φ of 3-SAT, we construct an instance of 3D-matching that has a perfect matching iff Φ is satisfiable
 - **Construction.**
 - Create gadget for each variable x_i with 2k core and tip elements.
 - No other triples will use core elements
 - In gadget i, 3D matching must use either both grey (set $x_i = true$) triples or both blue (set $x_i = false$) blue ones.
 - For each clause C_j create two elements and thee triples
 - Exactly one of these triples will be used in any 3D-matching
Ensures any 3D-matching uses either (i) grey core of x_1, (ii) blue core of x_2 or (iii) grey core of x_3

- For each tip, add a cleanup gadget

Claim. Instance has a 3D-matching iff Φ is satisfiable

Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y and Z?

Graph colouring

- 3-Colourability
 - **3-Colour.** Given an undirected graph G, does there exist a way to colour the nodes red, green and blue so that no adjacent nodes have the same colour?

- **Register allocation.** Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

- **Interference graph.** Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.
- **Observation.** [Chaitin 1982] Can solve register allocation problem iff interference graph is \(k \)-colourable.
- **Fact.** \(3\text{-Colour} \leq \text{P} \) \(k \text{-register-allocation} \) for any constant \(k \geq 3 \).
- **Claim.** \(3\text{-SAT} \leq \text{P} \) \(3\text{-Colour} \)
 - Pf. Given 3-Sat instance \(\Phi \), we construct an instance of 3-colour that is 3-colourable iff \(\Phi \) is satisfiable
- **Construction.**
 i. For each literal, create a node
 ii. Create 3 new nodes \(T, F, B \); connect them in a triangle, and connect each literal to \(B \)
 iii. Connect each literal to its negation
 iv. For each clause, add gadget (to be described next) of 6 nodes and 13 edges
- **Claim.** Graph is 3-colourable iff \(\Phi \) is satisfiable
 - Pf. \(\rightarrow \) Suppose graph is 3-colourable
 - Consider assignment that sets all \(T \) literals to true
 - (ii) ensures each literal is \(T \) or \(F \)
 - (iii) ensures a literal and its negation are opposites
 - Pf. \(\leftarrow \) Suppose 3-SAT formula \(\Phi \) is satisfiable
 - Colour all true literals \(T \)
 - Colour node below green node \(F \), and node below that \(B \)
 - Colour remaining middle row nodes \(B \)
 - Colour remaining bottom nodes \(T \) or \(F \) as forced
Numerical problems

- Subset sum
 - **Subset-sum.** Given natural numbers \(w_1, \ldots, w_n \) and integer \(W \), is there a subset that adds up to exactly \(W \)?
 - **Remark.** With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in binary encoding.
 - **Claim.** 3-SAT \(\leq_P \) Subset-sum
 - **Pf.** Given instance \(\Phi \) of 3-SAT, construct an instance of subset-sum that has solution iff \(\Phi \) is satisfiable
 - **Construction.** Given 3-SAT instance \(\Phi \) with \(n \) variables and \(k \) clauses, form \(2n + 2k \) decimal integers, each of \(n + k \) digits, as illustrated below.
 - **Claim.** \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).
 - **Pf.** No carries possible.

- Scheduling with release times
 - **Schedule-release-times.** Given a set of \(n \) jobs with processing time \(t_i \), release time \(r_i \), and deadline \(d_i \), is it possible to schedule all jobs on a single machine such that job \(i \) is processed with a contiguous slot of \(t_i \) time units in the interval \([r_i, d_i]\)?
 - **Claim.** Subset-sum \(\leq_P \) Schedule-release times.
 - **Pf.** Given an instance of subset-sum \(w_1, \ldots, w_n \) and target \(W \),
 - Create \(n \) jobs with processing time \(t_i = w_i \), release time \(r_i = 0 \), and no deadline \((d_i = 1 + \sum_j w_j) \)
 - Create job 0 with \(t_0 = 1 \), release time \(r_0 = W \), and deadline \(d_0 = W + 1 \)

Co-NP and the asymmetry of NP

- **Asymmetry of NP.** We only need to have short proofs of yes instances
 - **Ex 1.** SAT vs Tautology
 - Can prove a CNF formula is satisfiable by giving such an assignment
 - How could we prove that a formula is no satisfiable?
 - **Ex 2.** Ham-cycle vs NO-Ham-cycle
 - Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
 - How could we prove that a graph is not Hamiltonian?
 - **Remark.** SAT is NP-complete and SAT \(\equiv_P \) Tautology, but how do we classify Tautology?
 - Not even known to be in NP

- NP and co-NP
 - **NP.** Decision problems for which there is a poly-time certifier
 - Ex. SAT, Ham-cycle, Composites
Def. Given a decision problem X, its complement \overline{X} is the same problem with the yes and no answers reversed.

Co-NP. Complements of decision problems in NP.
- Ex. Tautology, No-Ham-cycle, Primes

NP = co-NP?
- Fundamental question. Does NP = co-NP?
 - Do yes instance have succinct certificates iff no instances do?
 - Consensus opinion: no.

Theorem. If NP \neq co-NP, then P \neq NP.
- Pf idea.
 - P is closed under complementation.
 - If P = NP, then NP is closed under complementation.
 - In other words, NP = co-NP.
 - This is the contrapositive of the theorem

Good characterisations [Edmonds 1965] NP \cap co-NP
- If problem X is in both NP and co-NP, then:
 - For yes instance, there is a succinct certificate
 - For no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem
- Ex. Given a bipartite graph, is there a perfect matching.
 - If yes, can exhibit a perfect matching.
 - If no, can exhibit a set of nodes S such that $|N(S)| < |S|$

Observation. P \subseteq NP \cap co-NP.
- Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in P.
- Sometimes finding a good characterisation seems easier than finding an efficient algorithm.

Prime is in NP \cap co-NP
- Theorem. Primes is in NP \cap co-NP
- Pf. We already know that Primes is in co-NP, so it suffices to prove that Primes is in NP.
- Pratt’s theorem. An odd integer s is prime iff there exists an integer $1 < t < s$ s.t.
 - $t^{s-1} \equiv 1 \pmod{s}$
 - $t^{(s-1)/p} \neq 1 \pmod{s}$ for all prime divisors p of s − 1

Factor is in NP \cap co-NP
- Factorise. Given an integer x, find its prime factorisation.
- Factor. Given two integers x and y, does x have a nontrivial factor less than y?
- Theorem. Factor \equiv_P Factorise
- Pf.
 - Certificate: a factor p of x that is less than y
 - Disqualifier: the prime factorisation of x (where each prime factor is less than y), along with a certificate that each factor is prime.
Primality testing and factoring
 - We established Primes ≤ P Composites ≤ P Factor
 - Natural question: Does Factor ≤ P Primes?
 - Consensus opinion: No.
 - State of the art: Primes is in P (proved in 2001), Factor not believed to be in P
 - RSA cryptosystem
 - Based on dichotomy between complexity of two problems
 - To use RSA, must generate large primes efficiently.
 - To break RSA, suffixes to find efficient factoring algorithm

A partial taxonomy of hard problems
 - Polynomial-time reductions

![Diagram of problem hierarchy including 3-SAT, independent set, vertex cover, and others.](image)
Chapter 10 – Extending the Limits of Tractability

Coping with NP-completeness

- Suppose I need to solve an NP-complete problem. What should I do?
- Theory says you’re unlikely to find a poly-time algorithm
- Must sacrifice one of three desired features
 - Solve problem to optimality
 - Solve problem in polynomial time
 - Solve arbitrary instances of the problem
- This chapter: solve some special cases of NP-complete problems that arise in practice

Finding small vertex covers

- **Vertex cover.** Given a graph \(G = (V, E) \) and an integer \(k \), is there a subset of vertices \(S \subseteq V \) such that \(|S| \leq k \), and for each edge \((u, v) \) either \(u \in S \) or \(v \in S \), or both?

- What if \(k \) is small?
 - **Brute force.** \(O(kn^{k+1}) \)
 - Try all \(C(n, k) = O(n^k) \) subsets of size \(k \)
 - Takes \(O(kn) \) time to check whether a subset is a vertex cover.
 - **Goal.** Limit exponential dependency on \(k \), e.g. to \(O(2^kkn) \)
 - **Ex.** \(n = 1000, k = 10 \)
 - Brute: \(kn^k+1 \approx 10^{34} \) → infeasible
 - Better: \(2^kkn = 10^7 \) → feasible
 - **Remark.** If \(k \) is a constant, algorithm is poly-time; if \(k \) is a small constant, then it’s also practical
 - **Claim.** Let \(u – v \) be an edge of \(G \). \(G \) has a vertex cover of size \(\leq k \) iff at least one of \(G – \{u\} \) and \(G – \{v\} \) has a vertex cover of size \(\leq k – 1 \)
 - **Pf. →**
 - Suppose \(G \) has a vertex cover \(S \) of size \(\leq k \)
 - \(S \) contains either \(u \) or \(v \) (or both). Assume it contains \(u \)
 - \(S – \{u\} \) is a vertex cover of \(G – \{u\} \)
 - **Pf. ←**
 - Suppose \(S \) is a vertex cover of \(G – \{u\} \) of size \(\leq k – 1 \)
 - Then \(S \cup \{u\} \) is a vertex cover of \(G \)
- **Algorithm.**
 - **Claim.** The following algorithm determines if \(G \) has a vertex cover of size \(\leq k \) in \(O(2^kkn) \) time

```java
boolean Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains ≥ kn edges) return false
    let (u, v) be any edge of G
    a = Vertex-Cover(G – {u}, k-1)
    b = Vertex-Cover(G – {v}, k-1)
    return a or b
}
```
Pf.

- Correctness follows previous two claims
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes $O(\text{kn})$ time

\[
T(n, k) \begin{cases} \text{cn} & \text{if } k = 1 \\ \geq T(n, k-1) + c kn & \text{if } k > 1 \end{cases} \Rightarrow T(n, k) \leq 2^c k n
\]

Solving NP-hard problems on trees

- **Independent set on trees.** Given a tree, find a max cardinality subset of nodes such that no two share an edge.

 - **Fact.** A tree of at least two nodes has at least two leaf nodes (degree = 1).
 - **Key observation.** If v is a leaf, then there exists a maximum size independent set containing v.
 - **Pf.** (exchange argument)
 - Consider a max cardinality independent set S
 - If $v \in S$, we’re done
 - If $u \notin S$ and $v \notin S$, then $S \cup \{v\}$ is independent $\Rightarrow S$ not maximum
 - If $u \in S$ and $v \notin S$, then $S \cup \{v\} - \{u\}$ is independent

- **Greedy algorithm**
 - **Theorem.** The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees)

    ```cpp
    Independent-Set-In-A-Forest(F) {
    S \leftarrow \emptyset
    while (F has at least one edge) {
    Let $e = (u, v)$ be an edge such that $v$ is a leaf
    Add $v$ to $S$
    Delete from $F$ nodes $u$ and $v$, and all edges incident to them.
    } return S
    }
    ```

 - **Pf.** Correctness follows from the previous key observation
 - **Remark.** Can implement in $O(n)$ time by considering nodes in postorder

- **Weighted independent set on trees.** Given a tree and node weights $w_v > 0$, find an independent set S that maximises $\sum_{v \in S} w_v$
 - **Observation.** If (u, v) is an edge such that v is a leaf node, then either OPT includes u, or it includes all leaf nodes incident to $u
Dynamic programming solution. Root tree at some node, say r

- $\text{OPT}_{\text{in}}(u) = \text{max weight independent set rooted at } u, \text{ containing } u$
- $\text{OPT}_{\text{out}}(u) = \text{max weight independent set rooted at } u, \text{ not containing } u$.

![Dynamic Programming Equation]

Theorem. The dynamic programming algorithm finds a maximum weighted independent set in trees in $O(n)$ time.

Pf. Takes $O(n)$ time since we visit nodes in postorder and examine each edge exactly once.

- Context
 - Independent set on trees. This structured special case is tractable because we can find a node that breaks the communication among the subproblems in different subtrees.

![Diagrams of Communication Breaks]

- Graphs of bounded tree width. Elegant generalisation of trees that
 - Captures a rich class of graphs that arise in practice
 - Enable decomposition into independent pieces

Circular arc colouring

- Wavelength division multiplexing
- **Wavelength-division-multiplexing (WDM).** Allows \(m \) communication streams (arcs) to share a portion of a fibre optic cable, provided they are transmitted using different wavelengths.
- **Ring topology.** Special case if when network is a **cycle** on \(n \) nodes.
- **Bad news.** NP-complete, even on rights.
- **Brute force.** Can determine if \(k \) colours suffice in \(O(km) \) time by trying all \(k \)-colourings.
- **Goal.** \(O(f(k)) \cdot \text{poly}(m, n) \) on rings.

- **Interval colouring.** Greedy algorithm finds colouring such that number of colours equals depth of schedule.

- **Circular arc colouring.**
 - Weak duality: number of colours \(\geq \) depth.
 - Strong duality does not hold.
 - Max depth = 2; min colours = 3.

- **(Almost) transforming circular arc colouring to interval colouring.**
 - **Circular arc colouring.** Given a set of \(n \) arcs with depth \(d \leq k \), can the arcs be coloured with \(k \) colours?
 - **Equivalent problem.** Cut the network between nodes \(v_1 \) and \(v_n \). The arcs can be coloured with \(k \) colours iff the intervals can be coloured with \(k \) colours in such a way that “slices” arcs have the same colour.

- **Dynamic programming algorithm.**
 - Assign distinct colour to each interval which begins at cut node \(v_0 \).
 - At each node \(v_i \), some intervals may finish, and others may begin.
 - Enumerate all \(k \)-colourings of the intervals through \(v_i \) that are consistent with the colourings of the intervals through \(v_{i-1} \).
 - The arcs are \(k \)-colourable iff some colouring of intervals ending at cur node \(v_0 \) is consistent with original colouring of the same intervals.
Running time. $O(k! \cdot n)$
- n phases of the algorithm
- Bottleneck in each phase is enumerating all consistent colourings
- There are at most k intervals through v_i, so there are at most $k!$ colourings to consider

Remark. This algorithm is practical for small values of k (say $k = 10$) even if the number of nodes n (or paths) is large
Chapter 11 – Approximation Algorithms

- Theory says it is unlikely to find a poly-time algorithm for an NP-hard problem.
- Must sacrifice one of three desired features: optimality, poly-time or ability to solve arbitrary instances
- ρ-approximation algorithm
 - Guaranteed to run in poly-time
 - Guaranteed to solve arbitrary instance of the problem
 - Guaranteed to find solution within ratio ρ of true optimum.
- Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Load balancing

- Load balancing problem. Assign each job to a machine to minimise makespan
 - **Input.** m identical machines, n jobs where job j has processing time t_j
 - Each job must run contiguously on one machine
 - Each machine processes one job at a time.
 - **Def.** let $J(i)$ be the subset of jobs assigned to machine i. The **load** of machine is $L_i = \sum_{j \in J(i)} t_j$
 - **Def.** The **makespan** is the maximum load on any machine $L = \max_i L_i$
- List scheduling algorithm
 - Consider n jobs in some fixed order.
 - Assign job j to machine whose load is smallest so far.

```
List-Scheduling(m, n, t_1, t_2, ..., t_n) {
  for i = 1 to m {
    L_i = 0          ← load on machine i
    J(i) = ∅         ← jobs assigned to machine i
  }
  for j = 1 to n {
    i = argmin_i L_i ← machine i has smallest load
    J(i) = J(i) U {j} ← assign job j to machine i
    L_i = L_i + t_j ← update load of machine i
  }
}
```
 - **Implementation.** $O(n \log n)$ using a priority queue.
- List scheduling analysis
 - **Theorem.** [Graham, 1966] Greedy algorithm is a 2-approximation.
 - First worst-case analysis of an approximation algorithm
 - Need to compare resulting solution with optimal makespan L^*
 - **Lemma.** The optimal makespan $L^* \geq \max_j t_j$
 - **Pf.** Some machine must process the most time-consuming job
 - **Lemma.** The optimal makespan $L^* \geq \frac{1}{m} \sum_j t_j$
 - **Pf.** The total processing time is $\sum_j t_j$
 - One of m machines must do at least a $\frac{1}{m}$ fraction of total work
 - **Theorem.** Greedy algorithm is a 2-approximation
 - **Pf.** Consider load L_i of bottleneck machine i
 - Let j be the last job scheduled on machine i
 - When job j assigned to machine i, i had the smallest load.
• Machine load before assignment is $L_i - t_j \Rightarrow L_i - t_j \leq L_k \forall 1 \leq k \leq m$

\[L_i - t_j \leq \frac{1}{m} \sum_k L_k \]

\[= \frac{1}{m} \sum_k t_k \]

Lemma 1 \[\leq L^* \]

• Sum inequalities over all k and divide by m:

\[L_i - t_j \leq \frac{1}{m} \sum_{k} L_k \]

\[= \frac{1}{m} \sum_{k} t_k \]

Now:

\[L_i = \frac{(L_i - t_j)}{L^*} + \frac{t_j}{L^*} \leq 2L^*. \]

Lemma 2

- m machines, $m(m-1)$ jobs of length 1 plus one job of length m:

 \[\text{LPT-List-Scheduling}(m, n, t_1, t_2, ..., t_n) \{
 \text{Sort jobs so that } t_1 \geq t_2 \geq \ldots \geq t_n

 \text{for } i = 1 \text{ to } m \{
 L_i = 0 \quad \leftarrow \text{load an machine } i

 J(i) = \emptyset \quad \leftarrow \text{jobs assigned to machine } i

 \}

 \text{for } j = 1 \text{ to } n \{
 i = \text{argmin}_k L_k \quad \leftarrow \text{machine } i \text{ has smallest load}

 J(i) = J(i) \cup \{j\} \quad \leftarrow \text{assign job } j \text{ to machine } i

 L_i = L_i + t_j \quad \leftarrow \text{update load of machine } i

 \}

 \} \]

- Longest processing time (LPT) rule:
 - Sort n jobs in descending order of processing time, and then run list scheduling algorithm
Observation. If at most m jobs, then list-scheduling is optimal
 Pf. Each job put on its own machine

Lemma. If there are more than m jobs, L* = 2 \text{t}_{m+1}
 \begin{itemize}
 \item Consider first \(m + 1 \) jobs \(t_1, \ldots, t_{m+1} \)
 \item Since the \(t \)'s are in descending order, each takes at least \(t_{m+1} \) time.
 \item At least one machine gets two jobs, by pigeonhole principle \((m + 1 \text{ jobs and } m \text{ machines}) \)
 \end{itemize}

Theorem. LPT rule is a 3/2 approximation algorithm
 Pf. Same basic approach as for list scheduling

Centre selection
 - Centre selection problem. Select \(k \) centres \(C \) to minimise the maximum distance from a site to nearest centre

Input. Set of \(n \) sites \(s_1, \ldots, s_n \)

Notation.
 \begin{itemize}
 \item \(\text{dist}(x, y) = \text{distance between } x \text{ and } y \)
 \item \(\text{dist}(s_i, C) = \min_{c \in C} \text{dist}(s_i, c) = \text{distance from } s_i \text{ to closest centre} \)
 \item \(r(C) = \max_{i} \text{dist}(s_i, C) = \text{smallest covering radius} \)
 \end{itemize}

Goal. Find set of centres \(C \) that minimises \(r(C) \), subject to \(|C| = k\)

Distance function properties.
 \begin{itemize}
 \item \(\text{dist}(x, x) = 0 \) identity
 \item \(\text{dist}(x, y) = \text{dist}(y, x) \) symmetry
 \item \(\text{dist}(x, y) \leq \text{dist}(x, z) + \text{dist}(z, y) \) triangle inequality
 \end{itemize}

Ex. each site is a point in the plane, a centre can be any point in the plane, \(\text{dist}(x, y) \) – Euclidean distance
 \begin{itemize}
 \item Remark. Search can be infinite.
 \end{itemize}

Greedy algorithm 1.
 \begin{itemize}
 \item Put the first centre at the best possible location for a single centre, and then keep adding centres so as to reduce the covering radius each time by as much as possible.
 \end{itemize}

Remark. Arbitrarily bad.

Greedy algorithm 2. Repeatedly choose the next centre to be the site farthest from any existing centre

```cpp
Greedy-Center-Selection(k, n, s_1, s_2, \ldots, s_n) \{
    C = \emptyset
    \text{repeat } k \text{ times} (\\)
    \quad \text{Select a site } s_i \text{ with maximum } \text{dist}(s_i, C) (\\)
    \quad \text{Add } s_i \text{ to } C (\\)
\}
return C
```

Observation. Upon termination, all centres in C are pairwise at least \(r(C) \) apart
- Pf. By construction of algorithm

Theorem. Let \(C^* \) be an optimal set of centres. Then \(r(C) \leq 2r(C^*) \)
- Pf. (by contradiction)
 - Assume \(r(C^*) \leq \frac{1}{2} r(C) \)
 - Consider ball of radius \(\frac{1}{2} r(C) \) around each site \(c_i \) in C, so there’s exactly one \(c_i^* \) in each
 - Let \(c_i \) be the site paired with \(c_i^* \)
 - Consider any site \(s \) and its closest centre \(c_i^* \) in \(C^* \)
 - \(\text{dist}(s, C) \leq \text{dist}(s, c_i) \leq \text{dist}(s, C_i^*) + \text{dist}(c_i^*, c_i) \) Triangle inequality
 - \(\leq 2r(C^*) \leq r(C^*) \) each since \(c_i^* \) is closer
 - thus \(r(C) \leq 2r(C^*) \)

Theorem. Greedy algorithm is a 2-approximation for centre selection problem
- Remark. Greedy algorithm always places centres at sites, but is still within a factor of 2 of best solution that is allowed to place centres anywhere. (e.g. points in the plane)
- Better approximation only in \(P = NP \)

The pricing method: vertex cover
- Weighted vertex cover. Given a graph \(G \) with vertex weights, find a vertex cover of minimum weight

- Pricing method. Each edge must be covered by some vertex \(i \). Edge \(e \) pays price \(p_e \geq 0 \) to use vertex \(i \)
- Fairness. Edges incident to vertex \(i \) should pay \(\leq w_i \) in total

 \[
 \sum_{i \in V} p_e \geq w_i
 \]

- Claim. For any vertex cover \(S \) and any fair prices \(p_e \), \(\sum_e p_e \leq w(S) \)
 - Pf. \(\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e \in \delta(i)} p_e \) each edge \(e \) covered by at least one node in \(S \)
 - \(\leq \sum_{i \in S} w_i \) sum fairness inequalities for each node in \(S \)
 - \(= w(S) \)
- **Pricing method.** Set prices and find vertex cover simultaneously

```plaintext
Weighted-Vertex-Cover-Approx(G, w) {
    foreach e in E
        \( p_e = 0 \)
    while (some edge \( i - j \) such that neither \( i \) nor \( j \) are tight)
        select such an edge \( e \)
        increase \( p_e \) without violating fairness
    S ← set of all tight nodes
    return S
}
```

- **Pricing method analysis**
 - **Theorem.** Pricing method is a 2-approximation
 - **Pf.**
 - Algorithm terminates since at least one new node becomes tight after each iteration of loop
 - Let \(S \) = set of all tight nodes upon termination of algorithm.
 - \(S \) is a vertex cover: if some edge \(i - j \) is uncovered, then neither \(i \) nor \(j \) is tight.
 - But then the loop would not terminate
 - Let \(S^* \) be optimal vertex cover. We show \(w(S) \leq 2w(S^*) \)

 \[
 w(S) = \sum_{i \in S} w_i = \sum_{e \in (i, j)} p_e \quad \text{all nodes in } S \text{ are tight}
 \leq \sum_{i \in V} \sum_{e \in (i, j)} p_e \quad S \subseteq V, \text{prices } \geq 0
 = 2 \sum_{e \in E} p_e \quad \text{each edge counted twice}
 \leq 2w(S^*) \quad \text{fairness lemma}
 \]

LP rounding: vertex cover

- Weighted vertex cover. Given an undirected graph \(G = (V, E) \) with vertex weights \(w_i \geq 0 \), find a minimum weight subset of nodes \(S \) such that every edge is incident to at least one vertex in \(S \).

```
  10  6  9  16
  6   6  10  9
  6 23  9  33
  7  6  52  52
```

- **Total weight = 55**

- **Integer programming formulation**
 - Model inclusion of each vertex \(i \) using a 0/1 variable \(x_i \)
 - \(x_i = 0 \) if vertex is not in vertex cover
 - \(x_i = 1 \) if vertex is in vertex cover
 - Vertex covers in 1-1 correspondence with 0/1 assignments: \(S = \{ i \in V : x_i = 1 \} \)
 - Objective function: maximise \(\sum_i w_i x_i \)
 - Must take either \(i \) or \(j \): \(x_i + x_j \geq 1 \)
• Weighted vertex cover. Integer programming formulation

\[
\begin{align*}
(\text{ILP}) \min & \quad \sum_{i \in V} w_i x_i \\
\text{s.t.} & \quad x_i + x_j \geq 1, (i,j) \in E \\
& \quad x_i \in \{0,1\}, i \in V
\end{align*}
\]

- **Observation.** If \(x^*\) is optimal solution to ILP, then \(S = \{i \in V : x_i^* = 1\}\) is a min weight vertex cover

• Integer programming. Given integers \(a_{ij}\) and \(b_i\), find integers \(x_j\) that satisfy:

\[
\begin{align*}
\max & \quad \sum_i a_{ij} x_j \\
\text{s.t.} & \quad Ax \geq b \\
& \quad x \text{ integral}
\end{align*}
\]

- **Observation.** Vertex cover formulation proves that integer programming is NP-hard search problem, even if all coefficients are 0/1 and there are at most two variables per inequality.

• Linear programming. Max/min linear objective function subject to linear inequalities.

 - **Input.** Integers \(c_j\), \(b_i\), \(a_{ij}\)
 - **Output.** Real numbers \(x_j\)

\[
\begin{align*}
(\text{P}) \max & \quad \sum_i c_j x_j \\
\text{s.t.} & \quad \sum_i a_{ij} x_j \geq b_i, 1 \leq j \leq m \\
& \quad x_j \geq 0, 1 \leq j \leq n
\end{align*}
\]

- **Linear.** No \(x^2\), \(xy\), \(\arcsin(x)\), \(x(x-1)\), etc.
- **Simplex algorithm.** [Dantzig 1947] Can solve LP in practice
- **Ellipsoid algorithm.** [Khachian 1979] Can solve LP in poly time
- **LP geometry in 2D**

\[
\begin{array}{c}
\text{The region satisfying the inequalities} \\
\implies \begin{cases}
x_1 \geq 0, x_2 \geq 0 \\
x_2 \geq x_1 + 2 \\
x_1 + 2x_2 \geq 6
\end{cases}
\end{array}
\]

• LP relaxation

 - Weighted vertex cover linear programming formulation

\[
\begin{align*}
(\text{LP}) \min & \quad \sum_{i \in V} w_i x_i \\
\text{s.t.} & \quad x_i + x_j \geq 1, (i,j) \in E \\
& \quad x_i \geq 0, i \in V
\end{align*}
\]

- **Observation.** Optimal value of LP \(\leq\) optimal value of ILP
 - **Pf.** LP has fewer constraints
- **Note.** LP is not equivalent to vertex cover
- Using LP to help find a small vertex cover: Solve LP and then round fractional values
- **Theorem.** If \(x^*\) is optimal solution to LP, then \(S = \{i \in V : x_i^* \geq \frac{1}{2}\}\) is a vertex cover whose weight is at most twice the min possible weight.
 - **Pf.** [S as a vertex cover]
 - Consider edge \((i, j) \in E\)
Since \(x_i^* + x_j^* \geq 1 \), either \(x_i^* \geq \frac{1}{2} \) or \(x_j^* \geq \frac{1}{2} \) \(\Rightarrow (i, j) \) covered.

Pf. [S has desired cost]

- Let \(S^* \) be optimal vertex cover. Then
 \[
 \sum_{i \in S^*} w_i \geq \frac{1}{2} \sum_{i \in S^*} w_i x_i^* \geq \frac{1}{2} \sum_{i \in S} w_i
 \]
 LP is a relaxation \(x_i^* \geq \frac{1}{2} \)

 - **Theorem.** 2-approximation for weighted vertex cover
 - **Theorem.** [Dinur-Safre 2001] If \(P \neq NP \), no \(\rho \)-approximation for \(\rho < 10\sqrt{5} - 21 \) even with unit weights
 - Open research problem. Close the gap.

Knapsack problem

- Polynomial time approximation scheme (PTAS)
 - \((1 + \varepsilon)\)-approximation algorithm for any constant \(\varepsilon > 0 \)
 - Consequence. PTAS produces arbitrarily high quality solution, but trade off accuracy for time.
 - This section. PTAS for knapsack problem via rounding and scaling

- Knapsack is NP-complete
 - **Knapsack.** Given a finite set \(X \), nonnegative weights \(w_i \), nonnegative values \(v_i \), a weight limit \(W \), and a target value \(V \), is there a subset \(S \subseteq X \) such that:
 \[
 \sum_{i \in S} w_i \leq W \quad \sum_{i \in S} v_i \geq V
 \]
 - **Subset-sum.** Given a finite set \(X \), nonnegative values \(u_i \), and an integer \(U \), is there a subset \(S \subseteq X \) whose elements sum to exactly \(U \)?
 - **Claim.** Subset-sum \(\leq_p \) Knapsack.
 - **Pf.** Given instance \((u_1, ..., u_n, U)\) of subset-sum, create knapsack instance:
 \[
 v_i = w_i = u_i \quad \sum_{i \in S} u_i \leq U
 \]
 \[
 V = W = U \quad \sum_{i \in S} u_i \geq U
 \]

- Knapsack problem: dynamic programming 1
 - **Def.** \(\text{OPT}(i, w) = \text{max value subset of items } 1, ..., i \text{ with weight limit } w \).
 - Case 1. \(\text{OPT} \) does not select item \(i \)
 - \(\text{OPT} \) selects the best of \(1, ..., i - 1 \) using up to weight limit \(w \)
 - Case 2. \(\text{OPT} \) selects item \(i \)
 - New weight limit = \(w - w_i \)
 - \(\text{OPT} \) selects best of \(1, ..., i - 1 \) using up to weight limit \(w - w_i \)

 - **Running time.** \(O(nW) \)
 - \(W = \text{weight limit} \)
 - Not polynomial in input size!

- Knapsack problem: dynamic programming 2
 - **Def.** \(\text{OPT}(i, v) = \text{min weight subset of items } 1, ..., i \text{ that yields value exactly } v \).
 - Case 1. \(\text{OPT} \) does not select item \(i \)
 - \(\text{OPT} \) selects best of \(1, ..., i - 1 \) that achieves exactly value \(v \)
 - Case 2. \(\text{OPT} \) selects item \(i \)
 - Consumes weight \(w_i \), new value needed = \(v - v_i \)
OPT selects best of 1, …, i – 1 that achieves value v

\[OPT(i, v) = \begin{cases}
0 & \text{if } v = 0 \\
\infty & \text{if } i = 0, v > 0 \\
OPT(i-1, v) & \text{if } v > \nu \\
\min\left\{ OPT(i-1, \nu_i), \nu_i + OPT(i-1, \nu - \nu_i) \right\} & \text{otherwise}
\end{cases} \]

- Running time. \(O(nV^*) = O(n^2v_{\max}) \) \(V^* \leq n\nu_{\max} \)
 - \(V^* = \) optimal value = maximum \(v \) such that \(OPT(n, v) \leq W \)
 - Not polynomial in input size!

- **Knapsack: FPTAS**
 - **Intuition for approximation algorithm**
 - Round all values up to lie in smaller range
 - Run dynamic programming algorithm on rounded instance
 - Return the optimal items in rounded instance
 - **Knapsack FPTAS:** Round up all values:
 - \(\bar{v}_i = \left\lfloor \frac{v_i}{\theta} \right\rfloor \theta \), \(\bar{v}_i = \left\lfloor \frac{v_i}{\theta} \right\rfloor \)
 - \(\nu_{\max} \) = largest value in original instance
 - \(\epsilon \) = precision parameter
 - \(\theta \) = scaling factor = \(\frac{\nu_{\max}}{n} \)

- **Observation.** Optimal solution to problems with \(\bar{v} \) or \(\bar{v} \) are equivalent
- **Intuition.** \(\bar{v} \) close to \(v \) so optimal solution using \(\bar{v} \) is nearly optimal; \(\bar{v} \) is small and integral so dynamic programming algorithm is fast.

- **Running time.** \(O\left(\frac{n^2}{\epsilon}\right) \)
 - Dynamic program 2 running time is \(O(n^2\bar{\nu}_{\max}) \) where \(\bar{\nu}_{\max} = \left\lfloor \frac{\nu_{\max}}{\theta} \right\rfloor = \left\lfloor \frac{n}{\epsilon} \right\rfloor \)

- **Theorem.** If \(S \) is solution found by our algorithm and \(S^* \) is any other feasible solution, then:
 \[
 (1 + \epsilon) \sum_{i \in S} \bar{v}_i \geq \sum_{i \in S^*} v_i
 \]

- **Pf.** Let \(S^* \) be any feasible solutions satisfying weight constraint.
 \[
 \sum_{i \in S^*} v_i \leq \sum_{i \in S} \bar{v}_i \]
 always round up
 \[
 \leq \sum_{i \in S} \bar{v}_i \]
 solve rounded instance optimally
 \[
 \leq \sum_{i \in S} (v_i + \theta) \]
 never round up by more than \(\theta \)
 \[
 \leq \sum_{i \in S} v_i + n\theta \]
 \(|S| \leq n \)
 \[
 \leq (1 + \epsilon) \sum_{i \in S} v_i
 \]
 \(n\theta = \epsilon \nu_{\max}, \nu_{\max} \leq \sum_{i \in S} v_i \)
The Median Algorithm and Analysis of Quicksort

- **Median**: the \(\left(\frac{n}{2} \right) \)-th largest number in a sequence of numbers

- **The peak in a unimodal array**
 - Given an array \(A \) with \(n \) entries, with each entry holding a distinct number
 - The sequence \(A[1], A[2], \ldots, A[n] \) is called unimodal if there exists an index \(p \) between 1 and \(n \), such that the entries increase until position \(p \) and decrease after that.
 - Given a unimodal array, find the peak value – in \(O(\log n) \)

- **The peak value**
 - Divide and conquer (binary search)
 - Look at the middle position \(\frac{n}{2} \), and find the “slope” at that position by looking at one before and after it
 - Continue heading upwards on the slope recursively
 - If item left and right of it are less than the current item, then that is the peak.

- **Analysis of finding peak value**
 - \(T(n) = T \left(\frac{n}{2} \right) + \text{constant, for } n > 1; \quad T(1) = 1 \)
 - Easy to see this is \(O(\log n) \)
 \[T(n) \leq T \left(\frac{n}{2} \right) + c \]
 \[\leq \left\lceil \frac{n}{4} \right\rceil + c = T \left(\frac{n}{4} \right) + 2c \]
 \[\leq T \left(\frac{n}{2k} \right) + kc \]
 \[\leq 1 + c \log n \]
 - Repeat \(k \) times total, stop when \(\frac{n}{2^k} = 1 \)

- **Divide and conquer for the largest, second largest, or \(k \)-th largest element**
 - \(\text{Top}(x_1, x_2, \ldots, x_n) \)
 - If \((n \leq k) \) return \((x_1, x_2, \ldots, x_n) \)
 - \((a_1, a_2, \ldots, a_k) = \text{Top}(x_1, x_2, \ldots, x_{n/2}) \)
 - \((b_1, b_2, \ldots, b_k) = \text{Top}(x_{n/2 + 1}, \ldots, x_n) \)
 - Return the top \(k \) from \((a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k) \)

- **Analysis of finding \(k \)-th largest element**
 - \(T(n) \leq 2T \left(\frac{n}{2} \right) + c \)
 \[\leq 2 \left[2T \left(\frac{n}{2} \right) + c \right] + c = 2^2 T \left(\frac{n}{4} \right) + 2c + c \]
 \[\leq 2^3 T \left(\frac{n}{8} \right) + 2^2 c + 2c + c = 2^3 T \left(\frac{n}{8} \right) + 2^2 c + 2c + c \]
 \[\leq 2^m T \left(\frac{n}{2^m} \right) + c[1 + 2 + \cdots + 2^{m-1}] \]
 \[\leq 2^{\log n} + c \left[1 + 2 + \cdots + 2^{\log n - 1} \right] \]
 \[\leq n + c O(n) = O(n) \]
 - Previous algorithm (recursion) will not give a linear time algorithm.
 - If \(k = \frac{n}{2} \), this is the median problem

- **The median**
 - Can be found by sorting the numbers and taking the \(\left(\frac{n}{2} \right) \)-th element. But can we do it in linear time?
 - **The selection problem**
 - Given a set \(A \) of \(n \) (distinct) numbers and \(1 \leq i \leq n \), find the element \(x \) that is larger than exactly \(i - 1 \) other elements of \(A \).
 - The median is a special case of the selection problem.
Selecting the \(i \)th largest element in linear time:

- Divide the \(n \) elements into \(\frac{n}{5} \) groups of 5 elements each.
 (And at most one group with the remaining elements)
- Find the median of the groups
 - Sort each (vertical) group of size 5 in constant time
- Recursively find \(x \), the median of the \(\frac{n}{5} \) medians
- Partition the initial array around \(x \), the median of the medians
 (re-arrange groups around the median-of-the-medians)
- Using the partitioning, count the elements to the left of \(x \). Let \(k - 1 \) be the number of elements smaller than \(x \), so that \(x \) is the \(k \)th smallest element in the re-arranged array.
 - If \(i = k \), we’re done, return \(x \).
 - Otherwise if \(i < k \), then recursively find the \(i \)th largest element on the low partition, or the \((i - k) \)th element on the high partition
 - A bad case is where the partitioning around \(x \) is not so good. So with every recursive call, we do not get rid of enough elements. But this cannot be the case.
- Elements here are larger than \(x \), and elements here are smaller than \(x \).
- The high partition has at least all the blue elements and low partition has at least all the yellow elements. The partitioning is good.
 - Each of the yellow and blue parts have at least \(3 \left(\frac{n}{2} \right) - 2 \) \(\geq \frac{3n}{10} - 6 \) elements.
 - Every recursive call discards at least this many elements, leaving only \(\frac{7n}{10} + 6 \).
 - So the number of steps required is \(T(n) \leq T \left(\frac{n}{5} \right) + T \left(\frac{7n}{10} + 6 \right) + O(n) \)
 - Solution: \(T(n) = O(n) \)
- In linear time:
 - Break up in groups of 5 – \(O(n) \)
• Sort each group – $O(n)$
• Find median of the medians – $T\left(\frac{n}{5}\right)$
• Partition around the median of the medians – $O(n)$
• If not done, continue recursively on one side of the partition – $T\left(\frac{7n}{10} + 6\right)$

- The master theorem
 - $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ where $a \geq 1$, $b \geq 1$
 - $f(n) = O(n^{\log_b a - \epsilon})$
 $T(n) = \Theta\left(n^{\log_b a}\right)$
 - $f(n) = \Theta\left(n^{\log_b a}\right)$
 $T(n) = \Theta\left(n^{\log_b a \log n}\right)$
 - $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$
 $T(n) = \Theta\left(f(n)\right)$
 if $af\left(\frac{n}{b}\right) \leq cf(n)$ for some $c < 1$ and large n

Randomised analysis of quicksort

- Quick sort reminder
 - Choose a pivot element p
 - Partition array into two: the “smaller than p” partition and the “larger than p” partition
 - Recursively quick sort the two partitions
 - No merging step required, but if the pivot element leads to unbalanced partitions, then the running time is quadratic.
 - Worst case $O(n^2)$, but in practice, expected running time is fast $O(n \log n)$

- **Sorting.** Given a set of n distinct elements S, rearrange them in ascending order.

  ```
  RandomizedQuickSort(S) { 
    if |S| = 0 return
    choose a splitter $a_i$ uniformly at random
    foreach $(a \in S)$ { 
      if $(a < a_i)$ put $a$ in $S'$
      else if $(a > a_i)$ put $a$ in $S''$
    } 
    RandomizedQuickSort($S'$)
    output $a_i$
    RandomizedQuickSort($S''$)
  }
  ```

- **Remark.** Can implement in-place ($\log n$ extra space)

- **Running time.**
 - Best case. Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons
 - Worst case. Select the smallest element as the splitter: quicksort makes $\Theta(n^2)$ comparisons

- Randomise. Protect against worst case by choosing splitter at random.

- **Intuition.** If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $\Theta(n \log n)$ comparisons.

- **Notation.** Label elements so that $x_1, x_2 < ... < x_n$
• Splitting.

- BST representation. Draw recursive BST of splitters
- Observation. Element only compared with its ancestors and descendants
 - x_2 and x_7 are compared if their lca = x_2 or x_7
 - x_2 and x_7 are not compared if their lca = x_3, x_4, x_5 or x_6

- Claim. $P[x_i$ and x_j are compared] = $\frac{2}{j - (i + 1)}$

- Expected number of comparisons
 - Theorem. Expected number of comparisons is $O(n \log n)$
 - Pf. (Summation of probability that i and j are compared)
 $$\sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1} = 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j} \leq 2n \sum_{j=1}^{n} \frac{1}{j} \approx 2n \int_{x=1}^{n} \frac{1}{x} dx = 2n \ln n$$
 - Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65n$
 - Ex. if $n = 1$ million, the probability that randomised quicksort takes less than $4n \ln n$ comparisons is at least 99.94%
 - Chebyshev’s inequality. $P[|X - \mu| \geq k\delta] \leq \frac{1}{k^2}$

- Quicksort analysis
 - Linearity of expectation:
 $$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$
 - What is the probability that two numbers are compared?
 - i and j are compared only if either is chosen as the first pivot from the set $Y_{ij} = \{y_i, ..., y_j\}$
 - otherwise the two elements will be split in two partitions and will never be compared
o Pivot choice is uniform so all elements in Y^l are equally likely to be chosen
o Probability that y_i or y_j is chosen: $\frac{2}{j-i+1}$
o Let $k = j - i + 1$. All done.

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$= \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k}$$

$$= \sum_{k=2}^{n} (n + 1 - k) \frac{2}{k}$$

$$= \left(n + 1 \sum_{k=2}^{n} \frac{2}{k} \right) - 2(n - 1)$$

$$= (2n + 2) \sum_{k=1}^{n} \frac{1}{k} - 4n$$

$$= (2n + 2)H(n) - 4n$$

$$= 2n \log n + O(n)$$